JEM158 - Tools for Modern Macroeconometrics

Kredit: 6
Role předmětu: Anglicky
CFS - elective
EEI a HP - povinně volitelný
ET - povinně volitelný
F,FT a B - povinně volitelný
Magisterský - vše
MEF - elective
Semestr - letní
Garanti: Jakub Matějů
Stránky kurzu: JEM158
Literatura:
Popis: The primary objective of this course is to provide the students with the basic tools used in the contemporary macroeconometrics. Specifically, Bayesian and state space techniques will be introduced. These techniques are the workhorse models in the state-of-art macroeconomic research and are heavily used in practice as well (e.g central banks, international insititutions). The course will provide introduction to basic methodological and theoretical concepts. The main focus, however, will be on practical examples in Matlab. After successful completion of the course, the students should be able to understand and use these techniques in their applied research. Moreover, they should be well prepared to apply and extend baseline macroeconometric models in their bachelor or master thesis. The knowledge of these models will allow the students to pursue research that can be publishable in quality international journals.

Organization:
Winter semester, every Friday in room 016, 1530 – 1650 lecture, 1700 – 1820 exercise session
Because of capacity of computer room (016), the maximum number of students for the course is limited to 30, please register in Student Information System

Schedule:
07/10/2016 - Lecture 1 - Course overview / Introduction to Bayesian Econometrics
14/10/2016 - Lecture 2 - Normal linear regression with natural conjugate prior
21/10/2016 - Lecture 3 - Normal linear regression with other priors / Gibbs sampling
28/10/2016 - No Lecture/no exercise session (public holiday)
04/11/2016 - Lecture 4 - Nonlinear regression model / Metropolis Hastings algorithm
11/11/2016 - Lecture 5 - Bayesian model averaging
18/11/2016 - Lecture 6 - Bayesian vector autoregressions
25/11/2016 - No Lecture/no exercise session (Dean's holiday)
02/12/2016 - Lecture 7 - Introduction to state space modelling & Kalman filter
09/12/2016 - Lecture 8 - Estimation of state-space models (classical)
16/12/2016 - Lecture 9 - Estimation of state-space models (Bayesian)

Lecture slides and exercise session materials will be available at the course website in Student Information System.
Červenec 2019
poútstčtsone
1

234567
891011121314
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

    

Partneři

Deloitte
McKinsey & Company
Moneta Money Bank

Sponzoři

CRIF
ČSOB