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1. Introduction 

 

The Basle II regulatory formula (see Basle, 2006) aims to provide a sufficiently robust 

estimate of unexpected losses on banking credit exposures that should be covered by the 

capital. It is a compromise between the most advanced mathematical modeling techniques and 

the demand for a practical implementation. One of the most important simplifications is the 

decision to calculate unexpected losses (UL) using an estimate of the Unexpected Default 

Rate (UDR) multiplied through by the expected Loss Given Default parameter (LGD), i.e. 

UL=UDR⋅LGD. The capital requirement (C) as a percentage out of the exposure is then set 

equal to the difference between the unexpected and expected loss (EL), C = UL-EL = (UDR-

PD)⋅LGD, where PD is the expected default rate, i.e. the probability of default. 

While the expected default rate estimation based on the Vasicek (1987) approach is 

considered to be relatively robust, the resulting estimation of the unexpected loss has been 

criticized for neglecting the unexpected LGD (or equivalently recovery) risk. It has been 

empirically shown in a series of papers by Altman et al. (see e.g. 2004), Gupton et al. (2000), 

Frye (2000b, 2003), or Acharya et al. (2007) that there is not only a significant systemic 

variation of recovery rates but moreover a negative correlation between frequencies of default 

and recovery rates, or equivalently a positive correlation between frequencies of default and 

losses given default. Consequently the regulatory formula significantly underestimates the 

unexpected loss on the targeted confidence probability level (99.9%) and the time horizon 

(one year). Some authors have proposed alternative unexpected loss formulas incorporating 

the impact recovery risk variation. 

Frye (2000a, 2000b) has used a single systemic factor model with an idiosyncratic factor 

driving the event of default and another independent idiosyncratic factor driving the recovery 
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rate. The loading of the systemic factor for modeling of default and recovery rates may differ. 

The recovery rate is modeled as a normal variable truncated at 100%. Frye does not provide 

an analytical formula but analyzes robustness of the loss estimates using Monte Carlo 

simulation for different combinations of the input parameters. The parameters are also 

estimated using the maximum likelihood method from the Moody’s Risk Service Default 

database. Alternatively Dullmann and Trapp (2004) apply the logit transformation for 

recovery modeling in the same set up as Frye. 

Pykhtin (2003) considers a single systemic factor model where default is driven by a 

systemic factor and an idiosyncratic factor while recovery is driven not only by the systemic 

factor and an independent idiosyncratic factor, but at the same time by another idiosyncratic 

factor driving the obligor’s default. The collateral (recovery) value is set to have a lognormal 

distribution. Pykhtin arrives to an analytic formula which requires numerical approximations 

of the bivariate normal cumulative distribution values. The author admits that calibration of 

the model is difficult. 

Tasche (2004) proposes a single factor approach modeling directly the loss function. If 

there is no default the value of the loss function is zero and if there is a default (the systemic 

factor exceeds the default threshold) the value of the loss is drawn from a distribution as a 

function the systemic factor. The obligor factor is decomposed as usual into the systemic and 

idiosyncratic factor. In other words the single obligor factor is used to model the event of 

default and the loss given default as well. Tasche proposes to model LGD by a beta 

distribution. Quantiles of the loss function conditional on the systemic factor values may be 

expressed as an integral over a tail of the normally distributed factor. Tasche proposes to 

approximate the integral using Gauss quadrature and tests the model for different PD, 

mean/variance LGD, and correlation values. The approach is also elaborated in Kim (2006). 

This study is motivated not only by the fact that the Basle II formula significantly 

underestimates the unexpected credit losses but also by the observation according to which 

the regulatory capital requirement depends on the definition of default which in a sense puts a 

border line between the PD and LGD parameters. This phenomenon has been analyzed in 

Witzany (2008) using a Merton model based simulation. To give a more tractable analytical 

explanation we will apply the Tasche and Frye single factor models as benchmarks against 

which we analyze the sensitivity of the regulatory formula. At the same time we propose a 

simple specification of the regulatory formula in order to eliminate the problem. We propose 

to preserve the formula UL=UDR⋅LGD as well as the regulatory formula for unexpected 

default rate (UDR), but to reinterpret the parameter LGD as the 99.9% quantile of possible 
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portfolio loss given default values. The Basle (2005) document goes in this direction requiring 

LGD estimates to incorporate potential economic downturn conditions and adverse 

dependencies between default rates and recovery rates but fails to specify the confidence 

probability level of those conservative estimations. We argue that any probability level below 

99.9% preserves the problem definition of default sensitivity (and underestimation of the 

99.9% loss function percentile) while the 99.9% LGD quantile solves the problem under 

reasonable modeling assumptions. We propose a single factor beta distribution based 

technique calibrated with account level LGD mean, variance, cure rate and a correlation to 

obtain robust estimates of the 99.9%  LGD quantiles. As the reinterpretation of the formula 

leads to significantly higher capital requirement we propose to reduce the probability level 

e.g. to a more a realistic 99.5% currently used by the Solvency II proposal. 

  

2. Sensitivity of the Regulatory Capital on the Definition of Default 

 

According to Basle II the contribution of a receivable to the unexpected loss of a well-

diversified portfolio as a percentage of the exposure is estimated by the formula 

(1) 1 1

· ,  wh

( ) (0,99 )

re

9
.

1

eUL UDR

PD

LG

R

D

UD ρ
ρ

− −

=

 + ⋅
=  



Φ Φ


Φ −

 

The correlation ρ is set up by the regulator (e.g. 15% for mortgage loans, 4% for revolving 

loans, and somewhere between the two values depending on PD for other retail loans) while 

the parameters PD and LGD are estimated by the bank (in the IRBA approach). 

The usual LGD estimation approach is based on a sufficiently large historical data set of a 

homogenous portfolio of receivables A  in terms of product type, credit rating, and 

collateralization. The receivables have been observed for at least one year and we have a 

record : [0,1]l A →  of percentage losses ( )l a  on the exposure at default if default occurred or 

0 otherwise for every a A∈ , and an indicator function {: 0,1}d A → of default in the one year 

horizon. It seems natural to require that ( ) 1d a =  iff ( ) 0l a >  as in Tasche (2004), however in 

practice such a condition is difficult to achieve. According to Basle II receivables more than 

90 days overdue must be marked as defaulted. Some of the clients then naturally happen to 

pay all their obligations back; in particular in case of retail clients days overdue may just be a 

result of payment indiscipline not of a real lack of income to repay the loan. Hence we may 
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require only that ( ) 0l a > implies ( ) 1d a = but not vice versa. The PD and LGD parameters of 

the Basle II formula (1) can be simply estimated from the given reference data set as 

 p
n
D

= ,  

 
( )

| |
a A

l a
llgd

D p
∈= =
∑

,  

where ( }{ | ) 1A dD aa ∈ == , | |n A= , and 1 ( )
a A

l l a
n ∈

= ∑ . 

Here we are using equally weighted average loss given default that could be applied to a 

portfolio homogenous in terms of size. Let | ( }{ ) 0H A lD aa ∈ >=  be the set of receivables 

where we observed a positive loss, i.e. a hard default, and Hp , Hlgd  the averages as above. 

While the average (or expected) account level percentage loss · ·H Hlgdl p dp lg==  remains 

unchanged it is easy to see that Hp p<  and Hlgd lgd>  provided HD D⊂ . As banks have 

certain freedom for setting up their own definition of default, the ratio / Hp p may be in 

practice anywhere between 1 and 2. Banks may choose a lower days-past-due default 

threshold (e.g. 60 days), or lower materiality condition (minimum amount past due implying 

the default), or apply different cross-default rules (default on one product implying defaults 

on other products with the same obligor), etc. More accounts with ultimate loss zero are then 

marked as defaulted. On the other hand the definition of default must not be too soft: if an 

account is marked as defaulted the probability of real loss should be at least 50%. Hence 

given the same historical information (reference data set A ) with the account level average 

loss EL l=  and choosing different definition of default we obtain different values of 

( ), 2·H HPD p p∈ and  ( )/ , ·2H HlLGD E d dL PD g lg∈= . Since the definition of default does 

not change the distribution of losses implied by the reference data set the unexpected loss 

estimate given by (1) should remain essential the same. However Figure  shows that this is not 

the case. When we set 2%EL =  and let (2.5%,5%)PD ∈ then the ( )UL UL PD=  parameter 

goes from 16.3% down to 12.5%. In other words choosing the softest possible definition of 

default will reduce the capital requirement C UL EL= −  by almost 30% compared to the hard 

definition of default.  
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Figure 1. Unexpected loss according to the Basle II formula if EL=PD⋅LGD=2% is fixed 

and PD varies from 2.5% to 5% ( 15%ρ = ).  

 

It could be argued that the problem is solved by the requirement (Basle, 2005) on LGD to 

reflect downturn economic conditions or PD/LGD correlation. However this requirement 

given sufficiently rich historical data set is normally implemented using only the data set 

A A′ ⊂  from years with economic downturn conditions and/or high-observed frequency of 

default. The PD, LGD parameters estimated from A′  and UL calculated according to (1) will 

again depend on the definition of default in the same way as above. 

 

3. Alternative Single Factor Models 

 

The single factor models of Frye (2000a, 2000b), Pykhtin (2003), Tasche (2004), and 

others can be generally described as follows. Let the (percentage) loss of a receivable in the 

given time horizon be an increasing function of one systemic factor X and of a vector ζ
ur

 of 

idiosyncratic factors ( , )L L X ζ=
r

. The factor X  captures macroeconomic or other systemic 

influences that may develop in time while ζ
ur

reflects specificities of each individual obligor in 

a portfolio. Hence the impact of  ζ
ur

is diversified away in a large (asymptotic) portfolio while 

X  remains as a risk factor. Consequently the future unknown loss on a large portfolio can be 

modeled as [ | ]E L X  (see Gordy, 2003 for details). Since we assume that L is increasing in 

X the problem to find quantiles of [ | ]E L X  reduces to calculation of quantiles of X . If x is 

the desired (e.g. for 99.9%) quantile of X then [ | ]UL E L X x= = . This is a clear advantage of 

the single-factor approach compared to the multi-factor approach where we work with a 
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vector X
uur

of systemic factors instead of one factor X  and the determination of quantiles of 

[ | ]E L X
uur

 becomes complex. 

The expression for the unexpected loss may be decomposed into two parts corresponding 

to the unexpected default rate and loss given default: 

[ | ] [ 0 | · | 0,] [ ]E L X x P L X x E L L X x= = > = > = . 

Here we use the hard definition of default 0HD L⇔ >  while as explained above in 

practice we usually need to work with a softer definition of default. We will say that 

( , )D D X ζ=
r

is a consistent notion of default provided 0L D> ⇒ . Then the unexpected loss 

may be in general decomposed as 

(2)  ·] , ][ || [UL P D xX Lx E D X= = = . 

The simplest version of the singled-factor model is probably the model proposed by the 

Tasche (2004). The loss function ( , )L L X ζ=  is driven by one standard-normally distributed 

factor 1Y Xρ ρζ+ −=  where X  and ζ  are independent standard-normally distributed, 

and ρ  is their correlation.  If L  is assumed to have a cumulative probability distribution 

function :[0,1] [0,1]LF →  then we may express the loss function in the form 

*( (, 1) )( )LL X F Xρ ρζ ζΦ + −= or just *( )) ( )( LL Y F YΦ=  where * inf{ : }( ) ( )L Lt FF z t z≥= is 

the generalized inverse of LF . 

In a sense more natural model has been proposed by Frye (2000a,2000b) which may be in 

a generalized for described as follows. Let 1 1 1 11XY ρ ρ ζ+ −= and 

2 2 22 1XY ρ ρ ζ+ −= be two standard-normally distributed factors with one systemic and 

two independent idiosyncratic factors. The correlations 1ρ and 2ρ may be in general different. 

The first factor 1Y  drives defaults in the model while the second 2Y is assumed to drive losses 

in case of default. I.e. there is a default threshold Dy and a nonnegative non-decreasing 

function G so that the loss function can be expresses as follows: 

(3) 1
1 2

2

 if 
( ) otherwise

0 ,( , , ) .{ DL X Y y
G Yζ ζ = ≤  

If GF is the distribution function of the random variable 1( )G Y then the loss function may be 

expressed as *
2 2( ) ( ))(GG Y YF Φ= . 
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 The Pykhtin (2003) model in a sense unifies the two models. In a generalized form let 

1Y  be the driver of default as above, on the other hand let  

(4) 2 1 1 1 21 ( 1 )Y Xρ ρ ωζ ωζ+ − −= +  

be the driver of loss given default incorporating not only the systemic factor and a new 

idiosyncratic factor but also the idiosyncratic factor from 1Y . The loss function 1 2( , , )L X ζ ζ  is 

expressed by (3) as in the Frye’s model. The approach enables us to model the fact that loss in 

case of obligors’  default is determined by the value of assets and the specific financial 

situation at the time of default as well as by the workout/bankruptcy specific development. 

 Since we are in particular interested in unexpected loss given default modeling let us 

compare the three models in this respect. The unexpected loss given (hard) default conditional 

on a value of the systemic factor can is expressed as 

 (5) 

1

1 ( )

1

1[ | 0, ] ( )
1 y x

x d
y x

E L L X x L
ρ

ρ

ρ ρζ φ ζ ζ
ρ
ρ

∞

−

−

+ −
 −

Φ   −

>

 

= =

−
∫  

where 1( [ 0])y P L− =Φ= . On the other for the Frye model we get a nicer formula 

(6) 2 2 2[ | 0, ] [ ( | ]) ( ))1( xE L L X x E Y x G dG X ρ ρ ζ φ ζ ζ
+

−

∞

∞

> = = = −= +∫  

since the value of 2( )G Y does not depend on the idiosyncratic factor driving the default 

conditional on X x= . Regarding the Pykhtin model the reader may write down the double 

integral for [ | 0, ]E L L X x> = as an exercise. The approach if properly calibrated presents 

economically more faithful model compared to the other two. In fact the three correlation 

parameters of the model may be linked to the default correlation, loss given default 

correlation, and the default –  loss given default correlation.  Nevertheless since the model is 

difficult to calibrate and as is computationally complex we will on the Tasche and Frye 

models. In fact the models are two special cases of the Pykhtin model: set in (4) 1ω = and 

1 2ρ ρ= for the Tasche model and 0ω =  for the Frye model. 

 It follows from the analysis done in the following Section (see e.g. Figure 3) that the 

density function in (5) concentrates significantly to the border of default. Consequently given 

a correlation 1 2ρ ρ ρ= = it is not surprising that the variance of [ | 0, ]E L L X> in the Tasche 

model given by (5) is much lower than the variance in the Frye’s model given by (6). To 

model losses in case of default we will use the beta distribution with minimum 0 and 

maximum 1 determined by its mean µ and standard deviation σ .  Figure 2 shows the 
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distributions of the portfolio LGD in the two models given that 0.4µ = , 0.15σ = , and 

0.15ρ = . In the Tasche model we used the probability of default 0.01Hp = . It is obvious that 

the variance of the portfolio LGD is much lower in the case of Tasche model than in the case 

of Frye model. In fact the standard deviation of the former is approximately 4.5% while the 

standard deviation of the latter is 9.7%. 
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Figure 2. Portfolio loss distribution in the Tasche and generalized Frye model ( 0.4µ = , 

0.15σ = , 0.15ρ = , 0.01Hp = ) 

 

 The Tasche model in spite of its appealing simplicity turns out to be inappropriate if 

unexpected loss is to be factorized according to (2). If the correlation is calibrated for the 

unexpected default rate calculation (i.e. around the regulatory values) then the portfolio LGD 

variance is too low compared to empirical observation. This follows for example from the 

study of Frye (2003) showing that LGD in bad years is almost twice the LGD in good years, 

or Frye (2000b) where the Frye model correlation coefficients 1ρ and 2ρ  calibrated to a 

Moody’s database appear to be almost equal. Another disadvantage of the Tasche model is 

that PD estimations cannot be separated from LGD estimations. On the other hand the Frye 

model can be calibrated separately according to volatility of frequencies of default over a 

number years and according to volatility of portfolio LGD observed in a time series. 

 

4. An Analysis of the Sensitivity of the Regulatory Capital Formula  

 

The phenomenon described in Section 2 has been partially explained in Witzany (2008) 

using a Merton model based simulation where we argued that a softer definition of default 

terminates the asset value stochastic process sooner than a hard definition of default, thus 

reducing the variance of losses determined by the average LGD set at the time of default.  
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To provide a better analytical explanation of the difference between the real loss quantile 

and the regulatory loss quantile estimation (and its dependence on the definition of default) 

we will use the Frye and Tasche one factor models as benchmarks against which we compare 

the regulatory unexpected loss estimation.  In both the unexpected loss we need to estimate is 

given by 

(7) [ | ]UL E L X x= =  

where 1( )x α−= Φ  and α is the regulatory probability level 0.999. 

Let us consider the Tasche model first. Let [ 0] [ ]H Hp P L P D= > =  be the probability of 

“hard default” ( 0HD L⇔ > ). Note that (0) 1L HF p= −  where LF  is the distribution function 

of L . Consequently *( 0( )) ( )LL L Y F Y= Φ= =  for 1(1 )HY p−≤ Φ −  and *( ( )) 0LL F YΦ >=  for 

1(1 )HY p−> Φ − . Hence 1(1 )HHy p−= −Φ  is the hard default critical point for the factorY . As 

already explained banks naturally use a softer definition of default. Let us assume that such a 

definition of default is represented by another critical point Hy y< . With this new definition 

of default D Y y⇔ > the loss (given default) may be zero with a positive probability, 

[ 0 | ] [ ] 0HP L D P y Y y= = < >≤ . This new definition of default D  does not change anything 

on the unexpected loss [ | ]UL E L X x= =  where the notion of default is irrelevant. On the 

other hand the regulatory estimation of unexpected loss turns out to be different for the two 

definitions of default: 

(8) 
[ | ] ]

(

· [ |

· [ |) [ | ] ].

H
reg HH

reg

UL P Y y X x

UL y P Y y X x

E L Y y

E L Y y

= > =

= >

>

>=
 

Let 1 ( )p y= − Φ be the probability the soft default. Note that,  

(9) 
1

1 ]
( )

[ | ] [
1

xxP y pY y X x P ρ
ρ ρζ

ρ

− Φ
+ − > = Φ  =



+
−

=


>    

coincides with the regulatory formula for the unexpected default rate. The difference between 

(8) and (7) lies in the second part of the formula (8), i.e. in [ | ]E L Y y> where the regulation 

in general requires an average loss given default in the sense of the discussion above while the 

“real” unexpected loss  (7) can be decomposed as 

[ | ] [ | · [ | , ]]E L X x P Y y X x E L X x Y y= = > = = > .  

It appears obvious that [ | , ] [ | ]E L X x Y y E L Y y= > > > , the full proof is unfortunately 

rather technical. The right hand side of the inequality can be written as 
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1
1[ | ] ( ) ( ) ( )

1
( )

( ) y y

zE L Y y L z L z z dzdz
y

φ φ
∞ ∞

> = =
− Φ ∫ ∫  

where 
2

21( )
2

z

z eφ
π

−

= is the standard normal distribution density function and 

1
)(

)
)

(1
(z

y
z φ

φ
− Φ

=  . The left hand side equals to 

(10) 
1

2

1[ | , ] ( )
1

1 ( ) ( )
1

1 ( )

1

( )
1 1

1
y y

y x

E x d
y x

z x d

L Y y X x

z z dz

L

L z L z
y x

ρ
ρ

ρ ρζ φ ζ ζ
ρ
ρ

ρ
φ φ

ρ ρρ
ρ

∞

−
−

∞ ∞

+ − =
 −

Φ   − 
 −

=     − −−  Φ   −

> = =

−

=

−
 

∫

∫ ∫
 

where 2

1
( )

1 · 1
1

z x

z
y x

ρ
φ

ρ
φ

ρ
ρ

ρ

 −
  − =

  −
− − Φ    −  

. 

Both densities 1( )zφ and 2 ( )zφ  are normalized over the interval [ ),y +∞  hence to show that 

(11) 1 2( ) ( ) ( ) ( )
y y

L z z dz L z z dzφ φ
∞ ∞

<∫ ∫  

we need to analyze the relationship between the two densities. It follows from properties of 

the normal distribution density that (provided 0x >  and 0ρ > ) there is an y y>% so that 

1 2( ) ( )z zφ φ> on [ ),y y%  and 1 2( ) ( )z zφ φ< on ( , )y +∞% . See Figure 3 for an illustration 

with 1(0.99)y −= Φ , 1(0.999)x −Φ= , and 0.1ρ = . Provided ( )L z  is an increasing function 

(and not constant on [ ),y +∞ ) the inequality (11) follows immediately.  
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 Figure 3. Density functions 1φ  and 2φ  

  

To show that the regulatory unexpected loss is less than the Frye model unexpected 

loss is in fact much easier. In this case we just need to prove that 

(12) 22 2[ ( )] ) | ][ 1(E X X xG Y E G ρ ρ ζ< + − =  

with the notation from Section 3. The left hand side simply equals to ( )( ) y dyG y φ
−

∞

∞
∫  while the 

right hand side can be after a substitution written as 1( ) ( )G y y dyφ
−

∞

∞
∫ where 

1 /( 1)
1

xy y ρ
φ φ ρ

ρ

 −
−  − 

= . For 0ρ > it can be verified that the function 1( ) ( )y yφ φ<  on an 

interval 0( , )y−∞ and 1( ) ( )y yφ φ> on 0( ),y +∞ , see Figure 4. Consequently again (12) holds 

provided G is non-decreasing and strictly increasing on a non-trivial interval. 
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 Figure 4. Density functions φ  and 1φ  
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Next we want to show that the function 

( ) [ | ] ]· [ |regUL y P Y y X x E L Y y= > = > defined according to (8) is an increasing function of 

Hy y≤  for certain range of feasible values for y and ρ . Since [ ][ | ]
[ ]
E LE L Y y

P Y y
> =

>
we just 

need to show that the ratio between the unexpected loss ( )regUL y and the expected loss 

[ ]E L not depending on y  

(13) 
( ) [ | ]( , )

[ ] [ ]

1
1

1 ( )
regUL y P Y y X xh y

E L P

y

Y y

x

y

ρ

ρ
ρ

 −
− Φ   − >

=
> − Φ

=
= =  

is an increasing function of y . Note that the equation (13) is identical for the Tasche and Frye 

model.  Unfortunately we cannot prove generally that the function ( , )h y ρ is increasing in 

0y > for any given correlation 0ρ > .  In fact it is not increasing on (0, )∞ with 0ρ >  since 

1
y yxρ

ρ
−

−
> and so 1( ),h y ρ < for large y while clearly 1( ),h y ρ >  for smaller values 

of 0y > . However it can be shown using numerical approximations that the function is 

increasing over a range of admissible values for y and ρ .  Figure 5 shows the function (13) 

strongly increasing with the values 1(0.999)x −Φ=  and 0.4, 0.1, 0.15ρ ρ ρ= = = , and 

for 1(1 )Dy p−= Φ −  over the range [0.8,3.7] corresponding to admissible PD values in the 

interval [0.01%,21.2%]. 
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Figure 5 The ratio between the unexpected loss ( )regUL y and the expected loss 

[ ]E L increases with y  
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5. Improved Regulatory Formula 

 

 In Section 3 we gave a general definition of one (systemic) factor model.  

We have seen that if D is a consistent notion of default then the loss may be decomposed to 

·] , ][ || [UL P D xX Lx E D X= = = . It is not in general obvious that the conditional default 

rate [ | ]P D X x=   as well as the conditional loss given default [ | , ]E L D X x= are increasing 

functions of x . However it is a property of the aforementioned one-factor models (Tasche, 

Frye, Pykhtin). Consequently it is correct in the context of one-factor models where both the 

conditional PD and conditional LGD are increasing functions of the systemic factor X  to 

state that  

(14) ·UL UDR ULGD=   

where [ | ]UDR P D X x= =  is the α - quantile of possible default rates and 

[ | , ]ULGD E L D X x= =  the α - quantile of possible LGDs with x  being the α - quantile of 

X . The unexpected default rate is estimated consistently by the reasonably well by the 

regulatory formula (1). But we improve it significantly requiring that LGD is not the expected 

loss given default but the unexpected portfolio level loss given default (ULGD) on the 99.9% 

probability level. 

 For practical applications we propose to use instead of the generalized Frye’s model. 

In the notation of Section 3 we just need to evaluate 

(15) 1 2 2 2[ | , ] [ ( | ] ( )) 1 ( )DULGD E L Y y X x E G Y X dG xx ρ ρ ζ ζφ ζ
∞

∞

+

−

= > = = −= += ∫  

To complete our model we need to propose an appropriate loss given default functionG . We 

may follow Witzany (2008) specifying that ( )G Y  has a beta distribution calibrated to 

empirical mean and standard deviation. However since we consider that the default definition 

may be in a practice a softer one with a non-negligible percentage curep of receivables marked 

as defaulted being cured, i.e. ultimately ends up with zero loss, we extent the model as 

follows. Let µ and σ be the mean and standard deviation of observed positive losses assumed 

to have a beta distribution with minimum 0 and maximum 1. Let )( ,,B t µ σ be the 

corresponding cumulative Beta distribution function on [0,1] then the mixed distribution 

function incorporating the possibility of cures is defined by  
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(16) · ( , ,( ) (1 ) )cure cureF t p p B t µ σ= + − .  

Finally setting *( ) ( ( ))G Y F YΦ=  we see that G has the distribution given by F . To estimate 

the 99.9% ULGD we just need to evaluate (15) numerically for 1(0.999)x −Φ= . Figure 6 

illustrates the account-level LGD density function given by F for a given set of parameters 

(with mass weight curep  at 0) and the transformed portfolio level LGD density function of 

[ | ]E L X  derived from (15). 
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Figure 6. Account and transformed portfolio loss given default distribution ( 0.3curep = , 

0.4µ = , 0.15σ = , 0.1ρ = ). 

 

Unexpected loss estimated using the described technique is however still sensitive to the 

definition of default although Figure 8 shows that the sensitivity is moderate and opposite 

compared to the regulatory capital (unexpected loss estimation increases with softer definition 

of default). Another applicable solution is then to adjust the probability of (conventional soft) 

default p  with the observed probability of cures curep and then apply the hard default based 

formula  

(17) ( (1 ))· ( , )cure ULGDUL UDR p p µ σ= −  

where unexpected loss given (hard default) is estimated according to (15) using the beta 

distribution with mean µ and standard deviation σ .  

 

6. Numerical Examples 

 

 We are going to compare the values of regulatory unexpected loss in different 

scenarios: unexpected loss in the Tasche model, and unexpected loss in the Frye model with 

and without the cure rate. The scenarios are specified by the probability of hard default Hp , 

loss given (hard) default mean µ and standard deviation σ , correlations 1ρ ρ=  and 2ρ , and 
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the cure rate curep . The probability of soft default is then recalculated as / (1 )S H curep p p= − , 

the loss given soft default mean as (1 )urS c epµ µ −= and the standard deviation 

2 2(1 )( )S cure curep pσσ µ− += .  

 Figure 7 shows how it is difficult to align the Tasche and Frye model. If we fix 

15%ρ = as the correlation related to unexpected default rate and the other parameters as 

specified below than in order to obtain the same unexpected loss in the Frye model as in the 

Tasche model the LGD correlation must be reduced down to 1% or even less. Such a 

calibration is n contradiction with empirical studies like Frye (2000b, 2003). Thus we focus 

rater on the Frye modeling approach. 
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 Figure 7. Comparison of the 99,9% unexpected loss in the Tasche model and Frye 

model depending on 2ρ (with 1%Hp = , 45%µ = , 15%σ = , 15%ρ = , 0%curep = ) 

 

Figure 8 on compares the regulatory unexpected loss estimate with different estimation 

approaches based on the Frye model explained at the end of the previous section. While the 

UL_reg curve shows the regulatory unexpected loss declining with the cure rate going up, the 

curve UL_Frye_S based on the beta distribution calibrated to Sµ and Sσ turns out to be 

increasing. The dependence is weaker if we use the mixed beta distribution (16) 

(UL_Frye_S_c) and logically it is fully eliminated (UL_Frye_H) when we use (17). We 

consider the positive sensitivity of UL_Frye_S_c on the cure rate motivating banks to use a 

harder definition of default to be much more acceptable than the negative sensitivity of 

UL_reg which motivates banks to use a softer definition of default that is not usually ideal for 

credit risk modelling as pointed out in Witzany (2008). The problem is fully solved by 
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recalculating the probability of soft default to the probability of hard default, which might be 

however a little bit difficult to communicate in practice. 
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Figure 8. Regulatory and Frye model based 99,9% unexpected loss estimations 

depending on curep  (with 2.5%Hp = , 70%µ = , 15%σ = , 1 15%ρ ρ= = , 2 8%ρ = ) 

  

Incorporation of unexpected loss given default into unexpected loss calculation 

significantly increases the value compared to the regulatory unexpected loss. If we wanted to 

setup the model in line with current regulatory capital values we could consider reducing of 

the (artificially high) regulatory level. It turns out that the level of 99.5% (proposed e.g. for 

the Solvency II ) leads to comparable values of the regulatory UL on the 99.9% level and the 

Frye model UL on the 99.5% level. The relationship nevertheless depends on the σ and 

2ρ values. Figure 9 finally compares the sensitivity the 99.9% regulatory UL and 99.5% Frye 

model UL (17) on the probability of default and expected loss given default, other parameters 

fixed. The 99.5% Frye UL turns out to be more sensitive than the regulatory UL with respect 

to the probability of default but less to the expected loss given default. Hence by an 

appropriate recalibration of the confidence level we do not obtain the same unexpected loss 

estimations in all scenarios but using the proposed model we obtain a better correspondence 

between the real risk and the economic capital, more robust calculations, and at the same time 

overall same average level of capital. 
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Figure 9. Sensitivity of the 99.9% regulatory and 99.5% Frye model unexpected loss on Hp  

and µ  (with, 22%σ = , 1 15%ρ ρ= = , 2 13%ρ = , 45%µ =  in the first graph, and 1%Hp =  in 

the second) 

 

7. Conclusion 

 

We have demonstrated and analytically explained that the regulatory capital according to 

the Basle II formula is sensitive to the definition of default. We have shown that the problem 

may be relatively simply solved in the context of general single factor models requiring that 

the LGD parameter is reinterpreted as the 99.9% percentile of possible losses given default. 

We have considered three particular one (systemic) factor models and concluded that the one 

with two idiosyncratic factors proposed by Frye is the most appropriate to implement 

practically our model. The best results are provided by the model where the observed 

probability of soft default is adjusted using the cure rate to obtain the probability of hard 

default (which can be fully determined only ex post). Since the extended model gives higher 

unexpected loss values the confidence level can be recalibrated to a lower value (e.g. 99.5%) 

to achieve comparable capital levels. The resulting formula, which could replace the 

regulatory formula, provides a more robust and economically more faithful estimates of 

unexpected credit losses. 
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