No. 93

JAN KODERA, MIROSLAV VOŠVRDA

Production, Capital Stock and Price Dynamics in a Simple Model of Closed Economy

2005
Disclaimer: The IES Working Papers is an online, peer-reviewed journal for work by the faculty and students of the Institute of Economic Studies, Faculty of Social Sciences, Charles University in Prague, Czech Republic. The papers are blind peer reviewed, but they are NOT edited or formatted by the editors. The views expressed in documents served by this site do not reflect the views of the IES or any other Charles University Department. They are the sole property of the respective authors. Additional info at: ies@fsv.cuni.cz

Copyright Notice: Although all documents published by the IES are provided without charge, they are only licensed for personal, academic or educational use. All rights are reserved by the authors.

Citations: All references to documents served by this site must be appropriately cited. Guidelines for the citation of electronic documents can be found on the APA's website: http://www.apa.org/journals/webref.html.
Production, Capital Stock and Price Dynamics in a Simple Model of Closed Economy

JAN KODERA#, MIROSLAV VOŠVRDA*

Abstract

The purpose of this paper is to study a price level dynamics in a simple four-equation model. A basis of this model is developed from dynamical Kaldorian model which could be noticed very frequently in works of non-linear economic dynamics. Our approach is traditional. The difference is observed in a choice of an investment function. The investment function depending on the difference of logarithm of production and logarithm of capital (logarithm of the productivity of capital) is in a form of the logistic function. These two equations create relatively closed sub-model generating both production and capital stock trajectories. Two other equations describe the price level dynamics as a consequence of money market disequilibrium and continuously adaptive expectation of inflation. Our investigation is firstly aimed to core model dynamics, i.e., a dynamics of the production and capital stock. Secondly is to analyze dynamics of the model as a whole, i.e., to the first part is superadded the price dynamics and expected inflation dynamics depending on both an adaptation parameter of the commodity market and a parameter of the expectation. Thirdly we compute Lyapunov exponents for a simple model of closed economy showing it’s a chaotic behaviour. Simulation studies are performed.

JEL Classification: E44.

Keywords: investment ratio, propensity to save, expected inflation, nonlinear system, and price dynamics

Acknowledgements:
Financial support from GA CR under the grants 402/05/0115, 402/03/1292 and granted by the IES (Institutional Research Framework 2005-2010, MSM0021620841) is gratefully acknowledged.

Institute of Information Theory, Dept. of Econometrics, Academy of Sciences of the Czech Republic and University of Economics in Prague.

* Institute of Information Theory, Dept. of Econometrics, Academy of Sciences of the Czech Republic and Institute of Economic Studies, Faculty of Social Sciences, Charles University, Prague, e-mail: vosvrda@utia.cas.cz.
1. Production Sector and Capital Formation Model – A Statement

The Kaldor model has become a kernel of nonlinear models of closed economy. There are descriptions of the Kaldor model in many textbooks for the economic dynamics. For example we can take it in Lorenz, H.-W. (1994). The similar form of the Kaldor model is analysed by Flaschel, P., Franke, R., Semmler, W. (1997). A traditional form of this model has the following form

\[
\dot{Y} = \alpha [I(Y, K) - S(Y)].
\]

(1)

where \(Y, K\) depend on time and stand for a production and a capital stock respectively. The parameter \(\alpha > 0\) is the adjustment parameter. Investments \(I\) are increasing in the \(Y\) and are decreasing in the \(K\). The savings \(S\) are an increasing function of \(Y\). The equation (1) describes a production dynamics which is expressed as a consequence of disequilibrium between investments and savings.

The capital increase \(K\) is equal to the difference of investment and capital consumption. The capital consumption is assumed to be an increasing function of capital stocks \(D(K)\). The equation expressing capital dynamics is in the form as follows

\[
\dot{K} = I(Y, K) - D(K).
\]

(2)

The investment function is supposed to be the product of propensity to invest \(j\) depending on an expected productivity of capital \(\chi\) and a production \(Y\). As we assume that the individuals expect the actual productivity of capital we have

\[
\chi = \frac{Y}{K}.
\]

(3)

From the equation (3) we can obtain \(\varepsilon = \ln \chi = y - k\), where \(y, k\) stand for \(y = \ln Y\), \(k = \ln K\) respectively. For the investment function we assume

\[
I(Y, K) = j(\chi) \cdot Y = j(Y/K) \cdot Y.
\]

(4)

Using this notation we get

\[
\dot{Y} = j(Y/K) \cdot \dot{Y} = j(e^\varepsilon) = j(e^{y-k}) = i(y - k).
\]

(5)

A propensity to invest \(j\) is an increasing function of \(\varepsilon\) and it is assumed that it approaches to zero for decreasing \(\varepsilon\) to minus infinity and approaches to the maximum level for increasing \(\varepsilon\). We assume that a product of a constant \(\mu\) and a logistic function \(\lambda\), depending on \(\varepsilon\), is the fairly good approximation of the propensity to invest. The logistic function \(\lambda\) is a solution of the following differential equation

\[
\frac{d\lambda(\varepsilon)}{d\varepsilon} = \lambda(\varepsilon) \cdot (a - b \cdot \lambda(\varepsilon)).
\]

(6)

Let us consider an initial condition \(\lambda(0) = \lambda_0\). Then the logistic function \(\lambda\) takes on the following form

\[
\lambda(\varepsilon) = \frac{a \cdot \lambda_0}{b \cdot \lambda_0 + (a - b \cdot \lambda_0)} \cdot e^{-a \varepsilon}.
\]

(7)

We receive the propensity to invest \(i\) in the following form

\[
i(\varepsilon) = \mu \cdot \lambda(\varepsilon) = \frac{a \cdot \mu \cdot \lambda_0}{b \cdot \lambda_0 + (a - b \cdot \lambda_0)} \cdot e^{-a \varepsilon}.
\]

(8)

or

\[
i(y - k) = \mu \cdot \lambda(y - k) = \frac{a \cdot \mu \cdot \lambda_0}{b \cdot \lambda_0 + (a - b \cdot \lambda_0)} \cdot e^{-a(y-k)}.
\]

(9)

For the saving function we have used the following expression
The above equation describes the dependence of savings on investments as the product of a production Y and propensity to save $s_1 + s_1 \cdot y - s_2 \cdot \pi$ which is not a constant. We assume that it depends on a production y and on an expected inflation π. The dependence on the y is positive; the dependence on the expected inflation π is a negative. The higher expected inflation π the higher reduction of savings. Let us rearrange the equation (1) using the expressions for investments and savings. We get

$$\dot{Y} = \alpha \cdot [i(y-k) \cdot Y - (s_0 + s_1 \cdot y - s_2 \cdot \pi) \cdot Y].$$

(11)

Dividing the equation (11) by Y, we get

$$\dot{y} = \alpha \cdot [i(y-k) - (s_0 + s_1 \cdot y - s_2 \cdot \pi)].$$

(12)

Let $D = \beta \cdot K^\gamma$, $\beta, \gamma \in (0,1)$ denotes a capital consumption expressing the depreciated portion of capital. A capital formation in the closed economy is described by the following differential equation

$$\dot{K} = I(Y,K) - \beta \cdot K^\gamma.$$

(13)

or by the following one

$$\dot{K} = i(y-k) \cdot Y - \beta \cdot K^\gamma.$$

(14)

Dividing the equation (14) by K we get

$$\frac{\dot{K}}{K} = i(y-k) \cdot \frac{Y}{K} - \beta \cdot K^{\gamma-1}.$$

(15)

Using logarithms instead of original values of Y and K we get

$$\dot{k} = i(y-k) \cdot e^{y-k} - \beta \cdot e^{(\gamma-1)k}.$$

(16)

The equations (12) and (16) describe the production dynamics and the capital formation, i.e. the dynamics of Kaldor model. The final forms of these equations are as follows

$$\dot{y} = \alpha \left[\frac{a \cdot \mu \cdot \lambda_0}{b \cdot \lambda_0 + (a - b \cdot \lambda_0) e^{-a(y-k)}} - (s_0 + s_1 y - s_2 \cdot \pi) \right].$$

(17)

$$\dot{k} = \frac{a \cdot \mu \cdot \lambda_0}{b \cdot \lambda_0 + (a - b \cdot \lambda_0) \cdot e^{-a(y-k)}} \cdot e^{y-k} - \beta \cdot e^{(\gamma-1)k}.$$

(18)

2. Price Level and Expected Inflation Dynamics

Let us add to the considered model the equations for a price level and an expected inflation dynamics. Price level dynamics outflows from the disequilibrium in money market. Demand for money in the money market is assumed to be given by Fisherian demand for money equation

$$M^d = \frac{1}{V(\pi)} P \cdot Y.$$

(19)

where M^d - demand for money, P - price level, V - the velocity of money, π - expected inflation. A velocity of money V is assumed to increase with an expected inflation. Making the logarithm of the above equation we get

$$m^d = p + y - v(\pi).$$

(20)
where \(m^d \) - logarithm of demand for money, \(p \) - logarithm of price level, \(v \) - logarithm of the velocity of money. Logarithm of the velocity of money is assumed to be given by the following equation

\[
v(\pi) = v_0 + \kappa \cdot \theta(\pi).
\] (21)

where a constant \(v_0 \) is determined by a technological level of the banking sector. A parameter \(\kappa \) is a constant and \(\theta \) is a logistic function solving the logistic equation

\[
\frac{d\theta(\pi)}{d\pi} = \theta(\pi) \cdot (g - h \cdot \theta(\pi)).
\] (22)

Supplying an initial condition \(\theta(0) = \theta_0 \) we get particular solution of the above differential equation.

\[
\theta(\pi) = \frac{g \cdot \theta_0}{h \cdot \theta_0 + (g - h \cdot \theta_0) \cdot e^{-\pi \cdot \theta}}.
\] (23)

Now we are ready to introduce an equation for the price level dynamics in the extended model. The price level dynamics is a consequence of the disequilibrium in money market. An equilibrium is expressed by the difference between supply of money \(m^s \) and demand for money \(m^d \), so we get

\[
\dot{p} = \sigma \cdot (m^s - m^d).
\] (24)

where \(\sigma \) is an adjustment parameter. Replacing \(m^d \) from (20) and using (21), (24) yields

\[
\dot{p} = \sigma \cdot [m^s - p - y + v_0 + \kappa \cdot \theta(\pi)].
\] (25)

An adaptive expectation of inflation is expressed by

\[
\dot{\pi} = \omega \cdot (\dot{p} - \pi).
\] (26)

Substituting from (25) to (26) we get

\[
\dot{\pi} = \omega \cdot \left[\sigma \cdot [m^s - p - y + v_0 + \kappa \cdot \theta(\pi)] - \pi \right].
\] (27)

Using the relation (21) we get the final form of the equations describing the price level dynamics and the adaptive expectation of inflation.

\[
\dot{p} = \sigma \cdot \left(m^s - y - p + v_0 + \kappa \frac{g \cdot \theta_0}{h \cdot \theta_0 + (g - h \cdot \theta_0) \cdot e^{-\pi \cdot \theta}} \right)
\] (28)

\[
\dot{\pi} = \omega \cdot \left[\sigma \cdot \left(m^s - y - p + v_0 + \kappa \frac{g \cdot \theta_0}{h \cdot \theta_0 + (g - h \cdot \theta_0) \cdot e^{-\pi \cdot \theta}} \right) - \pi \right].
\] (29)

This system is, in the final form, composed by equations (17), (18), (28), and (29). The Jacobian of this system has the following form

\[
A = \begin{bmatrix}
A_{11} & A_{12} & \alpha & s_2 & 0 \\
A_{21} & A_{22} & 0 & 0 & 0 \\
-\omega \cdot \sigma & 0 & A_{33} & -\omega \cdot \sigma \\
-\sigma & 0 & A_{43} & -\sigma \\
\end{bmatrix}
\]
\[A_{11} = \frac{aa^2 \mu \lambda_o (a-b \lambda_o) \exp(-a(y-k))}{[b \lambda_o + (a-b \lambda_o) \exp(-a(y-k))]^2} \]
\[A_{12} = -\frac{aa^2 \mu \lambda_o (a-b \lambda_o) \exp(-a(y-k))}{[b \lambda_o + (a-b \lambda_o) \exp(-a(y-k))]^2} \]
\[A_{21} = \frac{a \mu \lambda_o \exp(y-k)}{b \lambda_o + (a-b \lambda_o) \exp(-a(y-k))} \]
\[A_{22} = -\frac{a \mu \lambda_o \exp(y-k)}{b \lambda_o + (a-b \lambda_o) \exp(-a(y-k))} \]
\[A_{33} = \frac{\omega \sigma \kappa g^2 \theta_o (g-h \theta_o) \exp(-g \pi)}{(h \theta_o + (g-h \theta_o) \exp(-g \pi))^2} - 1 \]
\[A_{43} = \frac{\sigma \kappa g^2 \theta_o (g-h \theta_o) \exp(-g \pi)}{(h \theta_o + (g-h \theta_o) \exp(-g \pi))^2} \]

In the matrix notations, we have expanded system \(f(\mathbf{x}(t)) \), composed by equations (17), (18), (28), and (29), around equilibrium point \(\mathbf{x}^* = (x_1^*, x_2^*, x_3^*, x_4^*) = (y^*, k^*, p^*, \pi^*) \) and \(\mathbf{J}(\mathbf{x}(t)) = \mathbf{A} \) is the 4x4 Jacobian matrix of \(f(\mathbf{x}(t)) \) at \(\mathbf{x}^* \). Considering the dynamical system as a map, the time evolution of distance is as follows

\[y(t_{n+1}) - y(t_n) = f(y(t_n)) - f(x(t_n)) \text{ for } n = 1, 2, \ldots \]

and by the linearization we have

\[y(t_{n+1}) - x(t_{n+1}) = \mathbf{J}_n(y(t_n)) - x(t_n) + O(\|y(t_n) - x(t_n)\|^2) \]

The equilibrium point \((x_1^0, x_2^0, x_3^0, x_4^0) \) is stable if and only if the system

\[
\begin{bmatrix}
\frac{d(x_1(t) - x_1^0)}{dt} \\
\frac{d(x_2(t) - x_2^0)}{dt} \\
\frac{d(x_3(t) - x_3^0)}{dt} \\
\frac{d(x_4(t) - x_4^0)}{dt}
\end{bmatrix} =
\begin{bmatrix}
\frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_1(\mathbf{x})}{\partial x_2} & \frac{\partial f_1(\mathbf{x})}{\partial x_3} & \frac{\partial f_1(\mathbf{x})}{\partial x_4} \\
\frac{\partial f_2(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \frac{\partial f_2(\mathbf{x})}{\partial x_3} & \frac{\partial f_2(\mathbf{x})}{\partial x_4} \\
\frac{\partial f_3(\mathbf{x})}{\partial x_1} & \frac{\partial f_3(\mathbf{x})}{\partial x_2} & \frac{\partial f_3(\mathbf{x})}{\partial x_3} & \frac{\partial f_3(\mathbf{x})}{\partial x_4} \\
\frac{\partial f_4(\mathbf{x})}{\partial x_1} & \frac{\partial f_4(\mathbf{x})}{\partial x_2} & \frac{\partial f_4(\mathbf{x})}{\partial x_3} & \frac{\partial f_4(\mathbf{x})}{\partial x_4}
\end{bmatrix} \cdot
\begin{bmatrix}
(x_1(t) - x_1^0) \\
(x_2(t) - x_2^0) \\
(x_3(t) - x_3^0) \\
(x_4(t) - x_4^0)
\end{bmatrix}
\]

is stable, i.e. if all eigenvalues of the matrix of the system \(f(\cdot) \) have negative real parts. We denote \(\Lambda_i \) for \(i=1,\ldots,4 \) eigenvalues of the matrix \(\mathbf{J}_n(\cdot) \). The Lyapunov exponent \(\lambda_i \) is defined as follows

\[\lambda_i = \lim_{N \to \infty} \frac{1}{N} \ln |\Lambda_i|^N \text{ for } i=1,\ldots,4. \]

If \(\max_{i=1,\ldots,4} \lambda_i < 0 \), the nearby trajectories have a stable fixed point. If \(\max_{i=1,\ldots,4} \lambda_i = 0 \), the nearby trajectories have a stable limit cycle. If the dynamical system has very sensitive dependence on initial conditions then it has a Lyapunov exponent greater than unity. Lyapunov exponents provide extremely useful tools for characterizing the behaviour of nonlinear dynamic systems. It is very important that they are invariant to topological setting. For asymptotically stable fixed points of a 4-dimensional system, we will have 4 negative
Lyapunov exponents. For asymptotically stable limit cycles or quasiperiodic attractors, we will have 4-\(k\) negative Lyapunov exponents for \(k<4\) and \(k=1\) for a limit cycle, or \(k=s\) for quasiperiodic dynamics on a \(T^s\) torus. Chaotic attractors are associated with presence of a least one positive Lyapunov exponent, which signals that nearby trajectories diverge exponentially in the corresponding direction. The presence of one or more positive Lyapunov exponents is related to the lack of predictability of these systems. This property is an essential feature of chaotic behaviour. What is a dimension such attractor. Consider the typical orbit on chaotic attractor and the associated set of Lyapunov exponents ordered from the largest \(\lambda_1\) to the smallest \(\lambda_4\). Suppose that the \(j\)-th is the largest integer for which \(\sum_{i=1}^{j} \lambda_i > 0\). It implies that \(\lambda_{j+1} < 0\). Then the dimension of the attractor is calculated as follows

\[D_L = j + \frac{\sum_{i=1}^{j} \lambda_i}{|\lambda_{j+1}|} \]

and called Lyapunov dimension.

3. Numerical Example of the Extended Model

Let us calibrate the model by numbers in accordance with the following table

<table>
<thead>
<tr>
<th>(a)</th>
<th>(B)</th>
<th>(\lambda_0)</th>
<th>(s_0)</th>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(A)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.2</td>
<td>0.05</td>
<td>0</td>
<td>35</td>
<td>0.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\gamma)</th>
<th>(\Sigma)</th>
<th>(\omega)</th>
<th>(\mu)</th>
<th>(G)</th>
<th>(H)</th>
<th>(\theta_0)</th>
<th>(K)</th>
<th>(v_0)</th>
<th>(m^s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6</td>
<td>0.8</td>
<td>0.25</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>15</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

The propensity to invest and the propensity to save expressed by the equations (9) and (10) respectively have after the calibration the following form

\[i(y-k) = \frac{0.25}{1 + e^{-\gamma y} + k} , \]

\[s = 0.2 + 0.05 y. \] (30)

Using them in the equations (12) and (16) we get numerical form equations for a simulation of the simple model of the closed economy

Production Dynamics Equation

\[\dot{y} = 35 \cdot \left[\frac{0.25}{1 + e^{-\gamma y + k}} - (0.2 + 0.05 y) \right]. \] (31)

Capital Formation Equation

\[\dot{k} = \frac{0.25}{1 + e^{-\gamma y}} e^{\gamma y - k} - 0.1. \] (32)

Price Dynamics Equation

\[\dot{p} = 0.6 \left(2 - y - p + 1 \right) \left(1 + \frac{0.75}{1 + e^{-\gamma}} \right). \] (33)

Adaptive Expectation of Inflation
The initial conditions were chosen as \(y(0)=3, \ k(0)=10, \ p(0)=1, \) and \(\pi(0)=0. \) The trajectories and phase portrait of the numerical example are shown in Figures 1-4.

\[
\dot{x} = 0.8 \left[0.6 \left(2 - y - p + 1 + \frac{7.5}{1 + e^{-x}} \right) - \pi \right].
\] (34)
The phase portrait is demonstrated in Fig. 5.

Eigenvalues of this system equations are as follows:

\[
\text{eigenvals}(A) = \begin{pmatrix}
0.02 + 0.373i \\
0.02 - 0.373i \\
-0.6 \\
-0.999
\end{pmatrix}
\]

Lyapunov exponents have the following values 0.0635, 0.0, -0.0005, -1.7475. The Lyapunov dimension has the following value 3.03. A behaviour of Lyapunov coefficients, and the Lyapunov dimension for the simple model of the closed economy are demonstrated in Fig. 6.
Conclusions

The four-equation model was formulated in this paper. This model is actually augmented Kaldor model which is not only very well known but is intensively studied in economic dynamics. The original Kaldor model had been created by the equations (17) and (18). We have used a non-linear investment function, which is the product of the production and the propensity to invest. The logistic function was chosen for the approximation of the propensity to invest. Another type of non-linearity in our model is the non-linearity used in a velocity of money. The velocity of money is defined in our approach by the non-linear function of expected inflation. The logistic function as a realistic approximation of the velocity of money was chosen as well. By simulations of numerical examples this augmented Kaldor model ((17), (18), (28), and (29)) has demonstrated more complex behaviour of the simple closed economic system. Values of Lyapunov coefficients demonstrate a chaotic behaviour and an existence of the stable limit cycle (Fig. 5).
References

Guckenheimer, J. and Holmes, P.: Non–Linear Oscillation, Dynamical Systems and Bifurcations of Vector Fields. Springer Verlag, New York 1986
Previously published:

2003:
26. Ondřej Schneider: European Pension Systems and the EU Enlargement
27. Martin Gregor: Mancur Olson redivivus, „Vzestup a pád národů“ a současné společenské vědy”
28. Martin Gregor: Mancur Olson’s Addendum to New Keynesianism: Wage Stickiness Explained
29. Patrik Nový: Olsonova teorie hospodářského cyklu ve světle empirie: návrh alternativního metodologického přístupu
30. Ondřej Schneider: Veřejné rozpočty v ČR v 90. letech 20. století – kořeny krize
31. Michal Ježek: Mikroanalýza reformy českého důchodového systému
32. Michal Hlaváček: Efektivnost pořízení a předávání informace mezi privátními subjekty s pozitivně-externalitní vazbou
33. Tomáš Richter: Záštitní právo k podniku z pohledu teorie a praxe dluhového financování
34. Vladimír Benáček: Rise of an Authentic Private Sector in an Economy of Transition: De Novo Enterprises and their Impact on the Czech Economy
35. Tomáš Cahlík, Soňa Pokutová, Citrad Slavík: Human Capital Mobility
36. Tomáš Cahlík, Jakub Sovina: Convergence and soutěžní výhody ČR
37. Ondřej Schneider, Petr Hedbávný: Fiscal Policy: Too Political?
38. Jiří Havel: Akciová demokracie „Czech made“
40. Karel Janda: Credit Guarantees in a Credit Market with Adverse Selection
41. Lubomír Mlčoch: Společné dobro pro ekonomiku: národní, evropské, globální
42. Karel Půlpán: Hospodářský vývoj Německa jako inspirace pro Česko
43. Milan Sojka: Czech Transformation Strategy and its Economic Consequences: A Case of an Institutional Failure
44. Luděk Urban: Lisabonská strategie, její hlavní směry a nástroje.

2004:
45. Jiří Hlaváček, Michal Hlaváček: Models of Economically Rational Donators
47. František Turnovec: Economic Research in the Czech Republic: Entering International Academic Marke.t
48. František Turnovec, Jacek W. Mercik, Mariusz Mazurkiewicz: Power Indices: Shapley-Shubik or Penrose-Banzhaf?
49. Vladimir Benáček: Current Account Developments in Central, Baltic and South-Eastern Europe in the Pre-enlargement Period in 2002-2003
50. Vladimir Benáček: External Financing and FDI in Central, Baltic and South-Eastern Europe during 2002-2003
51. Tomáš Cahlík, Soňa Pokutová, Citrad Slavík: Human Capital Mobility II
52. Karel Dvůřík, Petr Teplý: Informační efektivnost kurzových trhů ve střední Evropě
53. František Turnovec: Česká ekonomická věda na mezinárodním akademickém trhu: měření vědeckého kapitálu vysokoškolských a dalších výzkumných pracovišť
54. Karel Půlpán: Měnové plánování za reálného socialismu
55. Petr Hedbávný, Ondřej Schneider, Jan Zápal: Does the Enlarged European Union Need a Better Fiscal Pact?
56. Martin Gregor: Governing Fiscal Commons in the Enlarged European Union.
57. Michal Mejstřík: Privatizace, regulace a deregulace utilit v EU a ČR: očekávání a fakta
58. Ilona Bažantová: České centrální bankovnictví po vstup České republiky do Evropské unie (právně institucionální pohled)
60. Irena Jindřichovská: Response of Regulatory Bodies to Financial Crises: Role of Auditors and International Comparison
61. Karel Janda: Bankruptcy Procedures with Ex Post Moral Hazard
62. Ondřej Knot, Ondřej Vychodil: What Drives the Optimal Bankruptcy Law Design
63. Jiří Hlaváček, Michal Hlaváček: Models of Economically Rational Donators: Altruism Can Be Cruel
64. Aleš Bulíř, Kateřina Šmidková: Would Fast Sailing towards the Euro Be Smooth? What Fundamental Real Exchange Rates Tell Us about Accessing Economies?
65. Gabriela Hrubá: Rozložení daňového břemene mezi české domácnosti: přímé daně
66. Gabriela Hrubá: Rozložení daňového břemene mezi české domácnosti: nepřímé daně
68. Ondřej Schneider: Who Pays Taxes and Who Gets Benefits in the Czech Republic?

2005:
69. František Turnovec: New Measure of Voting Power
70. František Turnovec: Arithmetic of Property Rights: A Leontief-type Model of Ownership Structures
72. Martin Gregor: Tolerable Intolerance: An Evolutionary Model
73. Jan Zápal: Judging the Sustainability of Czech Public Finances
74. Wadim Strielkowsi, Cathal O’Donoghue: Ready to Go? EU Enlargement and Migration Potential: Lessons from the Czech Republic in the Context of the Irish Migration Experience
75. Roman Horváth: Real Equilibrium Exchange Rate Estimates: To What Extent Are They Applicable for Setting the Central Parity?
76. Ondřej Schneider, Jan Zápal: Fiscal Policy in New EU Member States: Go East, Prudent Man
77. Tomáš Cahlík, Adam Geršl, Michal Hlaváček and Michael Berleman: Market Prices as Indicators of Political Events- Evidence from the Experimental Market on the Czech Republic Parliamentary Election in 2002
78. Roman Horváth: Exchange Rate Variability, Pressures and Optimum Currency Area Criteria: Implications for the Central and Eastern European Countries
80. Vít Bubák, Filip Žížek: Trading Intensity and Intraday Volatility on the Prague Stock Exchange: Evidence from an Autoregressive Conditional Duration Model
81. Peter Tuchyná, Martin Gregor: Centralization Trade-off with Non-Uniform Taxes
82. Karel Janda: The Comparative Statics of the Effects of Credit Guarantees and Subsidies in the Competitive Lending Market
83. Oldřich Dědek: Rizika a výzvy měnové strategie k převzetí eura
84. Karel Janda, Martin Čajka: Srovnání vývoje českých a slovenských institucí v oblasti změdělských finance
85. Alexis Derviz: Cross-border Risk Transmission by a Multinational Bank
86. Karel Janda: The Quantitative and Qualitative Analysis of the Budget Cost of the Czech Supporting and Guarantee Agricultural and Forestry Fund
87. Tomáš Cahlík, Hana Pessrová: Hodnocení pracovitosti výzkumu a vývoje
88. Martin Gregor: Committed to Deficit: The Reverse Side of Fiscal Governance
89. Tomáš Richter: Slovenská rekodifikace insolvenčního práva: několik lekcí pro Českou republiku
90. Jiří Hlaváček: Nabídková funkce ve vysokoškolském vzdělávání
91. Lukáš Vácha, Miloslav Vošvrda: Heterogeneous Agents Model with the Worst Out Algorithm
92. Kateřina Tsoilov: Potential od GDR/ADR in Central Europe