Detail publikace

What the Data Say about the Effects of Fiscal Policy in the Czech Republic?

Autor: PhDr. Jaromír Baxa Ph.D.,
Typ: Články ve sborníku
Rok: 2010
Číslo: 0
ISSN / ISBN: 978-80-7394-218-2
Publikováno v: Mathematical Methods in Economics 2010
Místo vydání:
Klíčová slova: Fiscal policy, fiscal multiplier, vector autoregression.
JEL kódy: C32, E62
Citace: Baxa, Jaromir (2010): What the Data Say about the Effects of Fiscal Policy in the Czech Republic? In: Houda, M., Friebelova, J. (eds.) Mathematical Methods in Economics 2010, University of South Bohemia, Ceske Budejovice, p. 24-29.
Granty: 402/09/0965: Nové přístupy pro monitorování a predikci na kapitálových trzích 402/09/H045 - Nelineární dynamika v peněžní ekonomii a financích. Teorie a empirické modely Výzkumný záměr IES (2005-2011) Integrace české ekonomiky do Evropské unie a její rozvoj
Abstrakt: In this paper, we provide the estimates of the fiscal multiplier in the Czech economy, based on the methodology of the fiscal VAR. The basic idea, adding fiscal variables into the macroeconomic VAR model, follows Blanchard and Perotti (2002). For estimation of our model, we utilize the dataset with quarterly data on a sample from the first quarter of 1998 to the second quarter of 2009. Our main results are as follows. Firstly, government expenditures have a positive and significant impact on the GDP. By contrast, a response of GDP on a shock to government revenues is slightly negative and in most specifications not significant. Secondly, these results are robust to various sensitivity checks. Consequently, the restoration of sustainable fiscal policy should focus rather on the revenues side than in the government expenditures, since a significant cut in government spending would probably have slowed down economic growth. Finally, we should note, that uncertainty connected with our results is large, namely in comparison with existing studies on the effects of monetary policy.
Ke stažení: BaxaMME2010.pdf

Partneři

ČSOB
Deloitte
McKinsey & Company

Sponzoři

CRIF