Detail publikace

The Extreme Value Theory as a Tool to Measure Market Risk

Autor: Mgr. Krenar Avdulaj Ph.D.,
Typ: IES Working Papers
Rok: 2011
Číslo: 26
Publikováno v: IES Working Papers 26/2011
Místo vydání: Prague
Klíčová slova: Value-at-Risk, Extreme Value Theory, copula.
JEL kódy: C22, G17
Citace: Avdulaj, K. (2011). “The Extreme Value Theory as a Tool to Measure Market Risk” IES Working Paper 26/2011. IES FSV. Charles University.
Abstrakt: Assessing the extreme events is crucial in financial risk management. All risk managers and financial institutions want to know the risk of their portfolio under rare events scenarios. We illustrate a multivariate market risk estimating method which employs Monte Carlo simulations to estimate Value-at-Risk (VaR) for a portfolio of 4 stock exchange indexes from Central Europe. The method uses the non-parametric empirical distribution to capture small risks and the parametric Extreme Value theory to capture large and rare risks. We compare estimates of this method with historical simulation and variance-covariance method under low and high volatility samples of data. In general historical simulation method overestimates the VaR for extreme events, while variance-covariance underestimates it. The method that we illustrate gives a result in between because it considers historical performance of the stocks and also corrects for the heavy tails of the distribution. We conclude that the estimate method that we illustrate here is useful in estimating VaR for extreme events, especially for high volatility times.
Ke stažení: WP 2011_26_Avdulaj


McKinsey & Company