Detail publikace

Estimation of Financial Agent-Based Models with Simulated Maximum Likelihood

Autor: doc. PhDr. Jozef Baruník Ph.D.,
PhDr. Jiří Kukačka Ph.D.,
Typ: IES Working Papers
Rok: 2016
Číslo: 7
ISSN / ISBN:
Publikováno v: IES Working Papers 7/2016
Místo vydání: Prague
Klíčová slova: heterogeneous agent model, simulated maximum likelihood, estimation, intensity of choice, switching
JEL kódy: C14, C51, C63, D84, G02, G12
Citace: Kukacka J., Barunik, J. (2016). “Estimation of Financial Agent-Based Models with Simulated Maximum Likelihood” IES Working Paper 7/2016. IES FSV. Charles University.
Granty: DYME – Dynamic Models in Economics GAUK 192215 - Odhad finančních heteroagentních modelů pomocí metody simulované maximální věrohodnosti
Abstrakt: This paper proposes a general computational framework for empirical estimation of financial agent based models, for which criterion functions do not have known analytical form. For this purpose, we adapt a nonparametric simulated maximum likelihood estimation based on kernel methods. Employing one of the most widely analysed heterogeneous agent models in the literature developed by Brock and Hommes (1998), we extensively test properties of the proposed estimator and its ability to recover parameters consistently and efficiently using simulations. Key empirical findings point us to the statistical insignificance of the switching coefficient but markedly significant belief parameters defining heterogeneous trading regimes with superiority of trend-following over contrarian strategies. In addition, we document slight proportional dominance of fundamentalists over trend following chartists in main world markets.
Ke stažení: wp_2016_07_kukacka

Partneři

ČSOB
Deloitte
McKinsey & Company

Sponzoři

CRIF