Forecasting Realized Volatility Using Neural Networks
Author: | Mgr. Jindřich Jurkovič |
---|---|
Year: | 2013 - summer |
Leaders: | doc. PhDr. Jozef Baruník Ph.D. |
Consultants: | |
Work type: | Finance, Financial Markets and Banking Masters |
Language: | English |
Pages: | 77 |
Awards and prizes: | |
Link: | |
Abstract: | In this work, neural networks are used to forecast daily Realized Volatility of the EUR/USD, GBP/USD and USD/CHF currency pairs time series. Their performan-ce is benchmarked against nowadays popular Hetero-genous Autoregressive model of Realized Volatility (HAR) and traditional ARIMA models. As a by-product of our research, we introduce a simple yet effective enhancement to HAR model, naming the new model HARD extension. Forecasting performance tests of HARD model are conducted as well, promoting it to become a reference benchmark for neural networks and ARIMA. |