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Abstract

The dissertation thesis deals with modeling and estimating credit risk. In the thesis we

particularly focus on the credit risk of retail, and more exactly mortgage, debtors. The thesis is
organized into three separate papers with a common theme, whidavislapment of a credit

risk measurement methodology from simpler enhancements of the current research to a model
able to capture such details as e.g. the duration structure of the mortgage portfolio. All three
papers use the same underlying datasem@series of the national US mortgage portfolio
delinquency and foreclosure rates. As the research was done during several years, the latter parts

of the thesis work with additional observations.

In the first paper, we demonstrate that the current remyylatandards for credit risk

guantification are based on assumptions that do not necessarily match the reality. Generalizing
thewellk nown Vasicek’s model, standing behind the
of a loan portfolio. The model,mii | ar |l 'y to the Vasicek’s model,
(expressed as the portfolio probability of default) into two risk factors, one common for all

borrowers in the portfolio, and one individual for each single borrower. Our model involves
dynamicsot he common factor, which influences the
contrary to the Vaaerma &é&shev honotlte pdrametérsoof oorenodelo n

may be estimated, and additionally, we provide a statistical evidence that thernmal model

is able to fit better the observed US mortgage delinquency rates than a normal one.

The second paper is a continuation of the research. In this paper, we introduce an improved
multi-factor credit risk model, describing simultaneously theulefate and the loss given
default. Our methodology is based on the Vasi
First, we add a model for loss given default (LGD), second, we bring dynamics to the model, and
third, we allow nomormal distributios of risk factors. Both the probability of default and the

LGD are driven by a common factor and an individual factor; the individual factors are mutually
independent, but we allow any form of dependence of the common factors. We test our model on

a nationvide portfolio of US mortgage delinquencies, modeling the dependence of the common
factor by a VECM model, and compare our results with the current regulatory framework, the

Basel Il. Our findings show, that a methodology, which is able to describe theddsgy

between the risk factors, can predict the mean and the quantile losses more precisely.



The most recent development in our research is described in the third paper. Similarly to the
second paper, we assume borrowers hold assets covering the instanteown real estate

which serves as collateral. Both the value of the assets and the price of the estate follow general
stochastic processes driven by common and individual factors. We describe the correspondence
between the common factors and the petage of defaults, and the loss given default,

respectively, and we suggest a procedure of econometric estimation in the model. On the
contrary to the second paper, here we add a multigenerational aspect and we model the assets of
different generations parately. We show that a more accurate estimation of common factors

can lead to savings in capital needed to hold against a quantile loss, compared to the Basel Il

framework.
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1. Introduction

The dissertation thesis wamspired by one particular problem, which in the last decade
influenced banking regulation, financial markets and the trustworthiness of large financial
institutions— modeling and estimating credit risk. In the thesis, we propose models of estimation
of credit risk with a particular focus on the credit risk of retail, and more specifically, mortgage
debtors.

We built our models on the textbook approach of the risk modeling giotttilio of loansof
Vasicek(Vasicek, 1987)who deduces the default rates of borrowers and thus the credit risk of
the loan portfolio from the value of the borrowers' assets, which follow a geometric Brownian
moti on. Further, we foll owed tFwye 2000whensi ons
assumes that the loss given default (LDG) is a second determinant of creafitwisk as

Pykhtin (Pykhtin, 2003) who suggests a model where LGD is driven by one syditeand two
idiosyncratic mderlying variables. Among other most influential mogdeds can include the
CreditMetrics model, in which the default frequency is modeled by transition matrices and
probabilities or the CreditRisk+ model (Wilde, 1997), which, in contrary to the Creditislet

model, assumes a Poisson distribution for the default frequency.

Our research adopted the above mentioned assumptions, namely that credit risk is based on the
fact that the credit losses are a function of PD and LGD which are further decomposed to
underlying factors. Also, the similarity between our research and the described approaches might
be found in the fact that PD and LGD are both driven by sysieand idiosyncratic factors,

specific for both variables. The main contribution of our workiheseveral improvements.

Firstly, we bring dynamics to the systate and idiosyncratic factors. Moreover, these factors,

in contrary to the current research, are estimated from macroeconomic indicators and only the
remaining variance is considered to beelment of uncertaintySeconty, the evolution of the
residualdrom the estimated models is allowed to be-nommal. Finally, in the last of the three
models we construet, we switch from the single portfolio approach to a ragétneration

approach, which enables usaiso modethe duration structure of the loaorgolio.
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The thesis is organized into three separate papers with a cotinemo@ which isthe

development of a credit risk measurement methodology from simpler enhancements of the
current research to a model capable of capturing such details as ewgatiendstructure of the
mortgage portfolio. All three papers use the same underlying dataset, a time series of the national
US mortgage portfolio delinquency and foreclosure rates. As the research waselmsyeral

years, the latter parts of the tteestilize a longer dataset with additional observations.

Our research was, from the very beginning, focused on relaxing tightening assumptions in

current models; however, as the research proceeded and we discovered further and further ways

of how to desdbe the development of the credit risk with a higher accuracy, the final model,

even thogh based on the same basis as the most common and used credit risk methodology,
Vasicek’s model, is a standal one mdowérod of es

estimated variance than Vasicek’'s approach.

I n the first paper, we relax sever al obviousl
standing behind the Basel Il 1. Our model , si mi
follow the geometad Brownian motion. If the value of assets of a borrower falls under a certain
threshold, commonly interpreted as a value of
in Vasicek’s model, we decompose abiitgofcredit r
default) into two risk factors, one common for all borrowers in the portfolio, and one individual

for each single borrower. The proportion of defaults in the portfolio is calculated as a limit if the
portfolio is sufficiently large. Additionallyby the Law of large numbers the individual factor on

a large portfolio cancels out and enters the final loss (or, more exactly default) distribution only

by its own distribution, which is assumed to be standard normal.

In contrary to Vasicek, our modeinvolves dynamics of the common factor, which influences

the borrowes assets. For this factor we proposed an AR process and constructed an empirical
model (estimated by the maximum likelihood estimator), in which the factor depends on
macroeconomic del@ment. The model was estimated on an empirical dataset of US mortgage
delinquency rates and macroeconomic indicators. Our analysis shows that the residuals (i.e. the
remaining unexplained variance in the common factor) have heavier tails than thdlgrigina

proposed normal distribution. Thus, we allow the residuals of the process of factors te be non

14



normal, with the Generalized Hyperbolic Distribution, which we show to tredgest fit. In
particular, we provide statistical evidence that the-mommalmodel is able to fit the observed

US mortgage delinquency ratestterthan ones with normal, lognormal or beta distributed
residualsWe point out how the assumption, that risk factors follow a normal distribution, can be
dangerous, especially during viila periods comparable to the crisis in 2€0009.The

methodology based on the normal distribution can underestimate the impact of changes in tail
losses. However, on the other hand, in periods with low volatility, the model showed lower
capital requirerants. This is due to the fact that we estimate the future loss distribution from

hi storical i nformati on, which i s, in fact, ne

The first paper is a joint research with Mart

published in the Journal of Economics in 2012.

The second papeiescribesanother model of credit risk, which is an extension of the research
from the first paper. In this paper, we introduce an improved +fadtor credit risk model,

describing simultaneousthe default rate and the loss given default. Our methodology is again
based on Vasicek’'s model (and thus the assump
Brownian motion)which we generalize in three ways this time. Rrrstve add a model fooss

given default (LGD), which is also an improvement compared to the first model. 8gocoad

bring dynamics to the model, and thiyrdwe allow noAnormal distributions of risk factors. Both

the probability of default and the LGD are driven by a comfactor and an individual factor;

the individual factors are mutually independent, but we allow any form of dependence of the
common factors. Thus the modeling of LGD is an analogous to PD modeling, with the
assumption that, analogously to the assets didh@wers in the case of PD, the real estate

prices follow a geometric Brownian motion. Based on, thiesbuild an analytically traable

function, which maps the relationship between the factor and the LGD. The factors in this model

are allowed to havegeneral shape with any kind of statistical distribution.

We tesedour model on a nationwide portfolio of US mortgage delinquencies; however, as to our
knowledge, there was no comparable LGD time series publically availabiefore, we
constructed a piy for LGD, based on the proportion of foreclosed on defaulted mortgages. We

modeled the interdependence of the two common factors by a VECM model, and cboopare
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results with the current regulatory framework, which is described in the Basel Il. Tits res
demonstrated that there is a statistically significant relationship between the actual values of the
factors and their past values, and moreover, these two time series are cointegrated. Similarly to
the first model, the normality of the residuals frirta VECM was rejected and thus we used the
fitted generalized hyperbolic distribution to arrive at the quantiles of PDs and LGDs. The final
results show that, in contrary to the first paper, the capital requirement is lower than in the case
of Vas pdeleTki$ is agam caused by a more accurate model (and inclusion of the LGD
model) than in the first case. This is a clear implication for risk management and quantification

of credit risk, because our modelalsakingsmpar ed

The second paper is also a prodefgbintr e sear ch wi th Martin Smid.

Czech Journal of Economics and Finance in 2012.

The most recent development in our research, our most advanced model of quantification of
credit risk is described and estimated in the last paper. Similarly to the first and the second
models, we assume that borrowers hold assets, from which they repay the instalments, and own
real estate, which serves as a collateral. This model fixes the most aigrafiewback of our

previous models, the singtgeneration approach. Particularly, the third model still assumes that
the value of the assets, as well as the price of the real estate, follow a geometric Brownian
motion driven by common and individual facgdout, in contrary to the preceding research,
portfolios last for more than a single period. In particular, in each period (or more specifically, in
each data point) new debtors enter the examined portfolio, while a part of the examined portfolio
exits the model by one of two possible exit states, which are a full repayment of a loan and a
default state. However, a price for an increased accuracy in the duration of individual generations
in the model is the loss of the analytical trackability of functimagping factors to PD, LGD,

respectively which have to be calculated numerically by simulation.

In the empirical part, we describe the correspondence between the common factors and the
percentage of defaults, and the loss given default, respectively,easulggest a procedure of
econometric estimation of the model. Similarly to the second model, we chose the VECM
procedure to model the relationships between the two common factors, and also the external

environment, represented by a set of macroeconomigb@s. For this we used the same dataset

16
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as in preceding casdsyweverenriched with recent observations. The VECM results showed

that the two common factors are cointegrated, and moreover, also déparndo

macroeconomic variablesGDP and unempionent rate. Using the enhanced framework, we
extracted more information from the empirical datasets, which induced that, as opposed to the
prior model, the normality of residuals was not rejected in the VECM model. The more accurate
estimation of commoretctors led to lower variation of the quantile estimate, which, translated to
the regulatory language, means savings in capital, whiobeided to cover unexpected losses, as
compared to the Basel Il framework. The second implication of the model ib¢haean value

of the loss can be forecasted by means of forecasts of common factors, GDP and unemployment,
which enables to calculate expected and unexpected losses under various macroeconomic

scenarios. This feature can be used e.g. for stress testing.

The third paper i s research conducted together
the research was not published at the time of the submission of the dissertation, but had been
submitted to the Journal of Credit Risk.

In the three papers weaveshown that the current commonly used credit risk quantification
methodology is a very gross estimation of the mean and quantile values of credit losses. The
framework can be improved by relaxing several of its assumptions, which, on the other hand,
bringsmathematical and computational complications, particularly in the case of the
multigenerational approach. In a nutshe# havemanaged to bring dynamics into the evolution
of credit losses in time, and wavedescribed the mapping of risk factors into PD and LGD.
Additionally, our approach is compatible withe econometric estimation of the factors model, if
it can be estimated by MLE. Lastly, saveshown that clear linkexists betweethe credit

risk andmacroeconomic environment, and that this link can be incorporated into the
guantification of credit losses. Even if the calculations are complex, usage of our model leads to
a more exact evolution of underlying risk factors, wratdoleads to a lower vance in the loss
distribution and therefore lower difference between the mean and the quantile losses. In

particular, our enhanced credit risk measurement methodology can save a portion of capital.

The complexity of our approadtasalso introduced apsce for further improvements. Among

the main challengesve can point out the appropriateness of the used data, especially

17



representing the LGD. For some portfoliosore accurate LGD datasets, e.g. for traded bonds,
may be foundAlso using an internalataset from a bank could lead to a better estimate of the
LGD. Seconty, the computational time of estimation of the most recent model versioites
time consuming. Introducing several simplificagoar fine tuning the codeould lead to
acceleratiorof the numerical calculation. Lagt the model can be enhanced to calculate
expected and unexpected losses for multiple portfolios by creating a module which would be
capable of joining the intraand intefportfolio correlations. We believbat theseets of models
cancontribute toabetter understanding of credit risk and mighgrefore beimplementedn

banking practics.
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2.Modeling a distribution of mortgage credit losses

2.1 Introduction

In our paper, we will focus on credit risk quantification methodology. Because banking is

heavily regulated in developed countries, the minimum standards for credit risk quantification

are often summarized ghirectives. The current recommended system of financial regulation was
developed and is maintained by international supervisory institutions located in Europe (Basel
Committee on Banking Supervision, CEBEommittee of European Banking Supervisors) and

its standards are formalized i n ttreaticB@d@cond Bas
Settlements, 2006) anslimplemented into European law by the Capital Requirements Directive

(CRD) (European Commission, 2006).

For credit risk, Basel Il allows dntwo possible quantification methodsa “ St andar di zed
Approach” (STA) and an “lInternal Rating Based
methods see Bank for International Settlements, 2006). The main difference between STA and

IRB is that unér IRB banks are required to use internal measures for both the quality of the deal
(measured by the countePPantwnsg tphpeolgakil liittyo
coll ater al (measured bLGIDH g .d dadley coupnd &b phair it e
default is the chance that the counterparty will default (or, in other words, fail to pay back its
liabilities) in the upcoming 12 months. A common definition of default is that the debtor is more

than 90 days delayed in its paymentsH{@ys past due). LGD is an estimate of how much of an
already defaulted amount a bank would lose. LGD takes into account expected recoveries from

the default, i.e., the amount that the creditor expects to be able collect back from the debtor after

the delbor defaults. These recoveries are mainly realized from collateral sales and bankruptcy

proceedings.

PD and LGD are two major and common measures of deal quality and basic parameters for
credit risk measurement. PD is usually obtained by one of the faljpmethods: from a scoring
model, from a Merto#based distanem-default model €.g. Moody's KMV mainly used for
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commercial loans; Merton, 1973 and 1974) or as ateny stable average of past 90+
delinquencied.The model, presented later in the papeovides a connection between the
scoring models and those based on past delinqueb@&scan be understood as a function of

collateral value.

Once PDs and LGDs are obtainedsswé dhme aklpe ctt
loss is the firsmoment, the mean, of a loss distribution, i.e., a mean measure of the credit risk. It

is a sufficiently exact measure of credit risk at the {tergh horizon. However, in the short term

(e.g., the ongrear horizon), it is insufficient to protect againspected losses only. The problem

is that losses on a portfolio follow a certain probability distribution in time. Thus, to protect itself
against credit losses, a bank not only has to cover the expected loss (mean), but also should look
into the right tailand decide which quantile (probability level) loss should be covered by holding

a sufficient amount of capital.

Banks usually cover a quantile that is suggested by a rating agency, but with the condition that
they have to observe the regulatory levabafbability of 99.9% at minimum. The regulatory

level may seem a bit excessive, as it can be interpreted as meaning that banks should cover a loss
which occurs once in a thousand years. The fact is that such a far tail in the loss distribution was
chosen bcause of an absence of ddtiae quantile loss is usually calculated by a VatRisk

type model $aunders: Allen, 2002; Anderssoret al., 2001). The IRB approach is a type of
Value-at-Risk model and approximates the loss distribution with a mixture@ttandardized

normal distributionsThe IRB model assumes that credit losses are caused by two risk factors:

first is a credit quality of the debtor and the second is a common risk factor for all debtors, often
interpreted as macroeconomic environmeéot. both factors, the IRB model assumes the

standard normal distribution in time.

In this paper, we will introduce a new approach to quantifying credit risk which can be classed
with the Valueat-Risk models. Our approach is different from the IRB meihdtie assumption
of the loss distribution. In the general version of our model, we assume that risk factors can be

distributed not only standard normal but can follow a more general distribution in time, the

I Delinquency is often defined as a delay in installment payments, e.g., 90+ delinquencies can be interpreted as a
delay in payments of more than 90 days.
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distribution of the common factor possibly dedag on its history (allowing us to model a

dynamics of the factor which appeared to be necessary especially during periods like the present
financial crisis). In the simpler version, we keep the IRB assumption that the individual risk

factor (credit quaty of a debtor) follows a standard normal distribution. In its general form, the
new approach can be used to measure the credit risk of many types of banking products, i.e.,
consumer loans, mortgages, overdraft facilities, commercial loans with a tiafice in

collateral, exposures to sovereign counterparties and governments, etc. To test our model, we
will demonstrate its goodnesd-fit on a nationwide mortgage portfolio. Moreover, we will

compare our results with the IRB approach, prove that gwegstion of normal distribution of

the common factotan be outperformed, and comment on what difficulties can ariseavhen

inappropriateassumption of normalitis made

The paper is organized as follows. After the introduction we will describe theausdélrisk

guantification methods and Basellinbedded requirements in detail. Then we will derive a new
method of measuring credit risk, based on the class of generalized hyperbolic distributions and
Value-at-Risk methodology. In the last part, we wWdkcus on the data description and

verification of the ability of the class of generalized hyperbolic distributions to capture credit risk
more accurately than the BaselRB approach. Moreover, we will compare the class of
distributions we use withsewea | di stri buti ons that are, along
distribution, commonly used for credit risk quantification. At the end we summarize our findings

and offer recommendations for further research.

At the time of the dissertation defense, thedall enhanced banking regulation was adopted in
Europe. However, as there were no significant changes in the Basel Il regarding the calculation

of the credit risk, our approach discussed in this paper remains still valid aodiaie.
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2.2 Credit risk measurement methodology

The Basel Il document is organized into three separate pillars. The first pillar requires banks to
quantify credit risk, operational risk, and market risk by a method approved by a supefasor.

credit risk there are two postlguantification method$: he “ St andar di zed Appr
and the “lInternal Rating Based Approach” (I RB
risk-weighted assets for each individual exposure. The STA method uses measures defined by

the superviar, i.e., each deal is assigned a-fiigkight based on its characteristics. Rigkighted

assets are obtained by multiplying the assignedwisight by the amount that is expdse

default. The IRB approach is more advanced than STA. It is based oicakidsrton credit

risk model (Vasicek, 1987and itsrisk-weighted assets calculation is more complicated than the

STA case. First of all, PD and LGD are used to define the riskiness of each deal. These measures
are then usetb calculate riskveighted assets based on the assumption of normal distribution of

asset value. In both cases, the largest loss that could occur at the 99.9% level of pAibability
calculated as 8% dherisk-weighted assetdor more details on riskveighted assets

calculations se@Bank for International Settlement, 20D6)he loss itself is defined as the

amount that is really losthen a default occurs. Default is a delay in payments of more than 90

days (90+ delinquaries).

2.2.1 Expected and unexpected loss for an individual exposure
Expected and unexpected losses are the two basic measures of credit risk. The expected loss is
the mean loss in the loss distribution, whereas the unexpected loss is the difference between the
expected loss andchosemuantile loss. In this part we wiibcus on expected and unexpected
loss quantification for a single exposure, e.g., one particular loan. Calculation of both expected
and unexpected losses requires PD and LGD. As there is no PD or LGD feature in the STA

2A supervisor is an institut i onarkegforghe €zedh&Képubticthe cert ai n ¢
supervisor is the Czech National Bank.

3The 99.9% level of probability is defined by the Basel Il document and is assumed to-e@eufgin tail for

calculating losses that do not occur with a high probability. N@tea!99.9% loss at the ogear horizon means

that the loss occurs once in 1,000 years on average. Because the human race lacks such a long dataset, 99.9% was
chosen based on rating agencies’ assessments.
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method, and becausepervisoryinstitutions are interested in unexpected losses only, under STA

it is impossible to calculate the expected loss, and even the unexpected loss calculation is highly
simplified and based on benchmarks only. On the other hand, the advantage of this method is its
simplicity. The IRB approach uses PDs and LGDs and thus is more accurate than the STA but
relatively difficult to maintain. A bank using the IRB method has to develop its own scoring and
rating models to estimate PDs and LGDs. These parameters are tthéo deéne each separate

exposurée. The average loss that could occur in the following 12 months is calculated as follows:
%, %0 $, ' $W! B (2.1)

where EAD is the exposua-defaulb and EL isthea b br evi ati on for “Expect
mean \alue of the expected loss is based on the mean value of the counterparty PD, the mean

value of the deal LGD and the EAD. The EADusually also a variable as it is a function of a
“Credit Conver %lowever,Foamortgage portfolios; EQFdrescribed by the

regulator. For our calculations we assume that if a default is observed, it happens on a 100%
drawn credit | i ne. dvarialde bw acodstam.El is therageeage IOBSAD a s
that would occur each year and thus is somgtthiat banks incorporate into their lepricing

models. It necessarily has to be covered by ordinary banking fees and/or interest payments.
However, EL is the “mean | oss”™ and thus i s un
themselves agaihss volatility, banks should hold capital to cover the maximum loss that

could occur at the regulatory probability level at minimum. To capture the variability in credit

losses over time and to calculate the needed quantile of the loss distributieedve second

moment of the loss distribution, the standard deviaiwhthe shape of the loss distributain

minimum.

On the deal level, the standard deviation calculation can be derived from the properties of
default. Default is a binary variablat either occurs (with a probability equalR®) or does not
occur (with a probability equal {d-PD)). If the LGD is positive,hie loss occurs with the same

4 Exposure is the usual expression for the balamca separate account that is currently exposed to default. We will
adopt this expression and use it in the rest of our paper.

5 Exposureat-default is a Basel Il expression for the amount that is (at the moment of the calculation) exposed to
default.

6 CCF is a measure of what amount of the loan (or a credit line) amount is in average withdrawn in the case of a
default. It is measured in % of the overall financed amount and is important mainly-baiafice sheet items (e.g.
credit lines, credit commitmnt s, wundr awn part of the | oan, etc..).
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probability as the default, but is usually lower than the defaulted amount (due to the fduet that t
bank sells its collateral and partly collects the defaulted ameilni is, in fact, the LGD) and

thus follows a binomial distributidnWe can calculate the standard deviation of a loss by
substituting into the formula for the binomial distributiostandard deviation. Finally, to protect
itself at a given probability level, a bank has to hold a stock of capital equal to the unexpected
loss: the difference between a certgirantile(equal to the chosen probability level) and the

mean of the loss disbution.

2.2.2 Expected and unexpected loss for a portfolio
On the portfolio level (constructed from a certain number of individual deals), the expected loss
calculation can be performed in the same way as for an individual deal. We either sum the
expected leses for the deals included in the portfolio or calculate a portfia@ighted average
PD and LGD, where the weights are the EADs of the individual deals. The portfolio EAD is then
calculated as the sum of the EADs for the deals inclubeerefore, we canse formula (2.)lto
calculate the portfolio expected loss.

However, the calculatioof the unexpected loss the portfolio level is not so straightforward.

Generally, the unexpected loss of a portfolio on a certain probability level can be calcutated as
decrease of the loan portfolio value on the same percentile. Howewas ale correlated among

each other. We have a complicated correlation structure that is usually unknown and thus we do

not even know how the individual deals in our portfolio iatér There are two ways of

constructing an unexpected loss calculation model. If the correlation structure among the

individual deals is known, we can multiply the vector ofdhexpected losses by the correlation

matrixto get a portfolio unexpectedloss Thi s approach i s eufpt’en refe

one.

Often, the correlation matrix of the individual deals is not known and thus a different approach
has to be chosen to determine the unexpected loss of the loan portfolio. The second approach is
widd y knowndawna dppmpoach and the main idea is

" Please note that the LGD variable can in some cases turn to positive values. This is for example a situation when a
l oan’s coll ateral covers the | oan value and a bank coll
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based on historical datat assume a distribution structuaed determine the standard deviation

or directly the difference between the chosen quantile and the meai va

2.3 Our approach

2.3.1 The distribution of Loan Portfolio Value
The usual approach to modelling the loan portfolio value is based on the famous paper by
Vasicek (2002) assuming that the vatugor the"@h's borrower's assets at the time one can be

represented as

1166 1166 - 8 (2.2)
whereo j, is the borrower's wealth at the time zer@nd are constants ar is a (unit
normal) random variable, which may be further decasepdas

where®is a factor, common for all the borrowers, @amds a private factor, specific for the

borrower (see Vasicek (2002) for details).

2.3.2 The generalization
We generalize the model in two ways: we assume a dynamics of theocoiactori and we
allow nontnormal distributions of both the common and the private factors. Similarly to the

original model, we assume that

116G 1 16¢ ® Y (2.3)

8 Remember that the loss mean value equals the expected loss of a deall
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whered f, is the wealth of th&xh borrower at the timéN =, 'Y} is a random variable specific
to the borrower and is the common factor following a general (adapted) stochastic process
with deterministic initial valu@y. Further for simplicity, we assume thdhe duration of the

debtis exactly one peod and thathe initial wealth fulfils
1 16G 1 O Wy

for all "Q €& wherewy, is a centered variable specific to the borowsuch an assumption makes
sense, for instance,d§ stands for logeturns of a stock index which corresponds to the
situation when the borrower owns a portfolio with the same composition as theplodesome

additional assets

Further, we suppose that al¥; ;v are mutually indeendent and idependent of

® g, and that altdy,  "Yp+op, ' Q £hoN w, are identically distributied withcy T,
O Ay »»» T, having a strictly increasing continuous cummulative distribution function
W (here,n is the number of borrowers). Note that we do not require incremeriis tf be

centered (which may be regarded a compensation for the-tpresent in (1) but missing in

(2)).

2.3.3 Percentage loss in the generalized model
Denote®d @ the history of the common factor up to the ticdnalogously to the
original model, the cafitional probability of the baauptcy of the'éh borrower at the time

given® equals to
nOf BRI ~ QO a&Q + O wl isg + @h

whereo j are the borrower's debts (installments)e assume the debts to be the same for all the

borrowers and all the times, i.€.16G  ddN &,"Q &, for someb.

Ten primary topic of our interest is the percentage lbossf the entire portfolio of the loans at
the timed. After taking the same steps as Vasicek (1991) (with conditionahnomr ma | c. d.

instead of the unconditional normal onesg get, for arery large portfolio, that
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furter implying that

ohw 0 w 0O (2.4)
and

Ohwyw O A (2.5)

the latter formula determining roughly the dynamics of the process of the losses, the former one
allowing us to do statistical inference of the common factor based on the time series of the
percentage losses.

To see that the Mertevlasicek model is a spit version of the generalized model, see the

Appendix.

In our version of the model we assuthg to be normally distributed and the common factor to

be an ARCH process

Yo=Y +cy,

t-1

where I, 14,2 are i.i.d. (possibly nomomal) variables and is a constant.

Since the equatior2@) may be rescaled by the inverse standard deviation @fithout loss of

generallity, we may assume thgts the standard normal distribution function.

As it was already mentioned, we assume the distributiodf tf be generalized hyperbolic and

we use the ML estimation to get its parametese the Appendix for details. In additiontioé
estimation of the parameters, we compare our choice of the distribution to several other classes

of distributions.
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2.3.4 The class of generalized hyperbolic distributions
Our model is based on the class of generalized hyperbolic distributions first introduced in
BarndorftNielsen et al. (1985). The advantage of this class of distributions is that it is general
enough to describe fétiled data. It has been shown (Eberl@@01, 2002, 2004) that the class
of generalized hyperbolic distributions is better able to capture the variability in financial data
than the normal distribution, which is used by the IRB approach. Generalized hyperbolic
distributions have been used inasset (and option) pricing formula (Rejman et al., 1997,
Eberlein, 2001; Chorro et al., 2008), for the Vahtdisk calculation of market risk (Eberlein,
2002; Eberlein, 1995; Hu & Kercheval, 2008) and in a Meltased distane®-default model
to estimate PDs in the banking portfolio of commercial customers (e.g., Oezkan, 2002). We will
show that the class of generalized hyperbolic distributions can be used for the approximation of a

loss distribution for the retail banking portfolio with a focus onrtteetgage book.

The class of generalized hyperbolic distributions is a special, quite young class of distributions. It

is defined by the following Lebesque density:

CEamhrhit Alnkrh v @& — +z51 1 @& Agpa (6

where

. i
Albirhy w o Zh : Sz

andKa.is a Bessel function of the third kind @modified Bessel functior for more details on

Bessel functions see Abramowitz, 1968). The GH distribution class is awvagancemixture

of the normal and generalized inverse Gaussian (GIG) distributions. Both the normal and GIG

distributions are thus subclasses of generalized hyperbolic distribufiandli are scale and

location parameters, respectively. Paramigisrthe skewass parameter, and the transformed

parameter | 1 determineghekurtosis. The last paramet@is a determination of the

distribution subclass. There are several alternative parameterizations in the literature using

transformed parameters dbtain scaleand locatioAnvariant parameters. This is a useful

feature that will help us with the economic capital allocation to individual exposures. For the
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momentgenerating function and for more details on the class of generalized hyperbolic

distributions, see the Appendix.

Because the class of generalized hyperbolic distributions has historically been used for different
purposes in economics as well as in physics, one can find several alternative parameterizations in
the literature. In order to aikbany confusion, we list the most common parameterizations. These

are:

The main reason for using alternative parameterizations is to obtain a loeatiscale
invariant shape of the momegéneratng function (see the Appendix).

2.4 Data and results

2.4.1 Data description
To verify whether our model based on the class of generalized hyperbolic distributions is able to
better describe the behavior of mortgage Issae will use data for the US mortgage market.
The dataset consists of quarterly observations of 90+ delinquency rates on mortgage loans
collected by the US Department of Housing and Urban Development and the Mortgage Bankers
Associatior? This data seriis the best substitute for losses that banks faced from their
mortgage portlios, relaxing the LGD variability (i.e. assuming that LGD = 100Phe dataset
begins with the first quarter of 1978hd end with the third quarter of 2009he deelopment of

theUS mortgage 90+ delinquency rate is illustrateBigure 2.1 and its descriptive statistics in

® The Mortgage Bankers Association is the largest US society representing the US real estate market, with over
2,400 members (banks, mortgage brokers, mortgage companies, life insumanpamies, etc.).
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Table2.1 We observe an unprecedentedly huge increase in the 90+ delinquency rate beginning

with the second quarter of 2007.
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Figure 2.1: Development of US 90+ delinquency rate

<

Time Series Statistic  Value (90+ delinquency)

Mean 0,9417
Median 0,8100
Minimum 0,5300
Maximum 4.4100
Standard Deviation 0,6112
Skewness 4,0317
Kurtosis 17,0240
5th percentile 0,5600
95t percentile 2,1260

Table 2.1: Descriptive statistics of US 90+ delinquency rate
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Starting our analysis, we have computed the values of the common*factising the formula
(4). Quite interestingly, its evolution is indeed similar to the one of US stock masket

Figure 2.2, displaying theecommon factor (left axis), adjusted for inflation, against the S&®
stock indexA simplecorrelation analysis indicatéisat the common factor is lagged behind the

index by two quarter@hevalue of thePearsorcorrelation coefficient isbout30%).
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Figure 2.2: Comparison of the development of the common factor and lagged S&P 500 returns

A more exact estimatioof the potential relationshifhe autoregressive estimatiqrerformed
on logchangegY dependent 08&P), showed thatttere is a significant dependerafea change
in the common factor on the change of the S&P 500 stock index, lagged by one Gharter.
detailed results of the autoregressive estimation can be fotiheTable2.2 Theregression R

was 23%.

Variable Coefficient Standard Error P-value
Intercept 0.00024 0.00399 0.9520
S&P 5000 0.05631 0.02851 0.0507

Table 2.2Results of the autoregressive estimation of dependence of Y on S&P 500

32



2.4.2 Results

We considered several distributions for describing the distributiddg ¢fence of(L,),., ),

namely loglogistic, logistic, lognormal, Pearson, inverse Gaussian, néograbymal,gamma,
extreme value, beta and the clasgeneralized hyperbolic distributions. In the set of
distributions compared, we were particularly interested in the gooofidis®f the class of
generalized hyperbolic distributions and their comparison to other distribuonsiore

information onthe MLE estimatiorwe have performedee the Appendix.

The second step is to test the hypothesis that the empirical dataset comes from the tested
distribution. We used the esguare goodness-fit test in the form:

B § ©O 7O, (2.6)

whereQ; is the observed frequency in thth bin, E; is the frequency implied by the tested
distribution, andk is the number of bins. It is well known that the test statistic asymptotically
follows the chisquare distribution witkk i c) degrees of 'edom, where is the number of
estimated parameters. In general, dhly generalized hyperbolic distribution from all
considered distributionsagnot rejected to describe the dataset baseti®nliisquare statistic

(on a 990 level).

Figure 2.3 shows graphically the difference between the estimated generalized hyperbolic and
normal distributions. FrorRigure 2.3 we can see that the GHD is able to describe better both the
skewness and the kurtosis of the dataset.
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Figure 2.3: Compared histograms: GHD vs. Normal vs. dataset

The chisquare statistishow that the class of generalized hyperbolic distributiotieisnly one
suitableto describe the behavior of delinquencies, even if we considered the dynamics of the
common faatr when using them. This fact can have a large impact on the economic capital
requirement, as the class of generalized hyperbolic distributions is-teledyand thus would

imply a need for a larger stock of capital to cover a certain percentile deltyqe will now
demonstrate the difference between the economic capital requirements calculated under the
assumption that mortgage losses follow a generalized hyperbolic distribution and under the Basel
Il IRB method (assuming standard normal distribwgiéor both risk factors and a 15%

correlation between the facté®s Note that we assume that all loans last only one period of

time, therefore all loans enter the calculation as entrants at the beginning of the period and exit
the calculation either by &rulting or a full repayment at the end of the peri®den thougtthis

is a significant limitation to our approgdhkeeps our model simple and might be partially

justified by the fact that some mortgages might be repaid at the time of interestfreaéion.

10The correlation 15% is a benchmark set for the mortgage exposures in the Basel Il framework.

34



2.4.3 Economic capital at the ongear horizon: implications for the crisis
The IRB formula, defined in Pillar 1 of the Basel Il Accord, assumes that losses follow a
distribution that is a mix of two standard normal distributions describindebelopment of risk
factors and their correlation. The mixed distribution is heaitgd and the factor determining
how heavy the tails are is the correlation between the two risk factors. However, because the
common factor is considered to be standardmoa | | v di stri buted, the fir
could be not heavy enough. If a hedayed distribution will be considered for the common
factor, the final loss distribution would probably have much heavier tails. Because the regulatory
capitalrequirement is calculated at the 99.9% probability level, this disadvantage may lead to
serious mistakes in the assessment of capital needs. To show the difference between the
regulatory capital requirement (calculated by the IRB method) and the ecorapié ¢
requirement calculated by our model, we will perform the economic capital requirement

calculations at the 99.9% probability level as well.

When constructing loss forecasts, we repeated|g (&8) to get

Lea #Y (7 (L) - A Vo)
1¢cic4

If we wanted to describe the distribution of the forecasted value we woulddagelicated
integral expressions. We therefore decided to use simulations to obtain yearly figures. We were
particularly interested in the following: the capital requirement basederage loss and the
capital requirement based on last experienced loss. The average loss is calculated as a mean
value from the original dataset-thedy ®l0e¢” dRDi nqg
estimate. This value is important for the regukpiora s e d mo d e | ( Ba-the | 1) as
cycle” PD should be used there. The | ast expe
our model with GHD distribution due to the dynamical nature of the model. The next Table
summarizes our findings. Tibustrate how our dynamic model would predict if th@mal

distributionof the common factor wassed, we added this version of the dynamic model as well.
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Model Basel I IRB Our dynamic model with Our dynamic model

(through-the-cycle normal distribution with GHD
PD)
Distribution used Standard Norma Standard Norma Standard Norma
for the individual
factor
Distribution used Standard Norma Normal Generalized Hyperboli
for the common
factor
99.9% loss 10.2851% 9.53020 12.5040%

Table 2.3: Comparison of Basel II, Dynamic Normal and Dynamic GHD models tail losses

The first column in th&able2.3 relates to the IRB Basel Il model, i.e. a model with a standard
normal distribution describing the behavior of both risk factors and the correlation betesen th
factors set at 15%.he PD used in the IRB formula (see Vasicek, 2002 for details) was obtained
from the original dataset as an average default rate through the whole time Peeisécond
column contains results from the dynamic model where a sthndamal distribution of the
individual risk factor is supplemented by the normal distribution, whicbrides the common
factor and i parameters were estimated in the same way as those of GHD. The last column is
related to our dynamic model where tBEID is assumed for the common factor. The results in
theTable 23 show that the dynamic model, based on thedagerience loss, predidtsgher

guantile losses ithe case of GHD and slightly lower in the case of Normal distribution,
compared to the IRBormula Thus heavytails of the GID distribution evoke higher quantile
losseghan the current regulatory IRB formulahich at the end lead to a higher capital

requirement.

2.5 Conclusion

We have introduced a new model for quantification of credit oS8 model is a

generalization of the current framework developed by Vasicek and our main contribution lies in
two main attribugs first, our model brings dynamics into the original framework and second,
our model is generalized in that sense that #atystical distribution can be used to describe the

behavior of risk factors.
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To illustrate that our model is able to better describe past risk factor behavior and thus better
predicts future need of capital, we compared the performance of severaltigislcommon in
credit risk quantification. In this sense, we were particularly interested in the performance of the
class of Generalized Hyperbolic distributions, which is often used to describethédwnancial

data. For this purpose, we used a tprér dataset of mortgage delinquency rates from the US
financial market. Our suggested class of Generalized Hyperbolic distributions showed much
better performance, measured by the Wasserstein and Andgaslarg metrics, than other

“cl as s i cislikknosnial logistic brigaanma.

In the next section, we have compared our dynamic model with the current risk measurement
system required by the regulation. The current banking regulation, summarized and formalized in
the Second Basel Accord (Baskltranslated to Credit Requirements Directive or CRD in the

EU), uses the standard normal distribution as an underlying distribution that drives risk factors
for credit risk assessment. In the loss distribution, the mean value (expected loss) should be
coveed by banking fees and interest and the difference between the mean value and'the 99.9
guantile (unexpected loss) should be covered by the stock of capital. We were particularly
interested in the difference between our dynamic model and the curreredRIBtory model,

which is used to calculate the required stock of capital in every advanced bank subject to the

Basel Il regulation.

Our results show that the mix of standard normal distributions used in the Basel Il regulatory
framework was, at the 99.9B4vel of probability, underestimating the potential unexpected loss
on the onegyear horizon. Therefore, introducing the dynamvds a heavytailed distribution

describing the common factoray lead to a better capturing of tail losses.

We have provethat using the normal distribution of risk factors development to quantify credit
risk is an assumption that could be easily outperformed by choosing a different, alternative
distribution, such as the class of generalized hyperbolic distributions. Howesrer are still

several questions that need to be answered before the class of generalized hyperbolic
distributions can be used for credit risk assessment. First question points at the use of'the 99.9
guantile. As this was chosen by the Basel Il framévibased on benchmarks from rating

agencies, it is not sure, whether particularly this quantile should be required in our dynamic
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generalized model. Second, more empirical studies have to be performed to prove the goodness
of-fit of the class of generalidehyperbolic distributionsThird, the assumption that alldos last

only one period idimiting. The final suggestion is to add an LGD feature to the calculation to
obtain a general credit risk model.
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Appendix

The momengenerating function for thelass of generalized hyperbolic distributions is of the

form:

Z4 Z4 . (219

whereu denotes the moment. For the first moment, the formula simplifiesetoe.g. Eberlein,

2001 for details)

-oam %D — _Zh(22)
28

The second moment is calculated in a (technically) more difficult way:

(2.39)

By substituing from equatios (2.2a) and @.3a) into equation Z.1a) we obtainmuch simpler
expression for the first and second morsefithe class of generalized hyperbolic distributions.
Thefollowing equations express the first and the second moment of thettgsseralized

hyperbolic distributions in their scalend locatioAnvariant shape:

-p %Y t ——nh

- ¢ 6AD Z

On MLE estimation of the parameters
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To estimate the parameters of the glpde. the constamtand the vector of the parametgrsf

(the distribution of)l/, we apply the (quasi) ML estimate to the sampleY,;,2 computed

from (4), using the fact, that the conditional densityofjiven Y, , is

QR U b tdy b b O

where s @y is the p.d.f. of the generalized hyperbolic distribution with paramgteFse

(quasi) loglikelihood function is then

~

0 oy 1 1'Co 1 T+C" w0y

Thereforewe may find its maximum in two steps: maximizetdo | A @ & where the

right hand side is determined using the standard Mkteqxure for g.h. distributions.

The MertorVasicek model as a special cadeur generalized framework
In the present section, we show how our generalized model relabesandinal one. Let us

start with the computation of the loss's distribution, given that the probability of default
o~ bR 6ied
is known (e.g. estimated by a credit scoring): Iis taise then
'O—d p B .. w —38

where... is the conditional c.d.f. of the variahled, ® &y andF, is the conditional

distribution function ofY, .

To see it, note that

and that
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Now, turn our attention to the correlations of the risk factors of different loans: Dedniiig
® Qf, we get

coMX,, X Viy) = var(X, . [Y,.,) = var(Y,|Y,.,)

and, consequently,

_ var(Y,|Y,.
Corr(xit’xjt‘Y—l) = —(Yt‘ 1
v var(Y,|Y, ,) +var(z,)

In particular, if we assum@ RO F8 to be i.i.d. and

od) T h Gpd) mip 7
for some” hthen clearly, ¢ tp implying
U 1N p "0 —
~ 0 —W p U — 8
. P "0 — 0 n
v o
and
Al Ggfvrgd

i.e. the formuls of Vasicek (2002).
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3. Dynamic Multi-Factor Credit Risk Model with
Fat-Tailed Factors

3.1 Introduction

The recent financi al Cri si <redthsk mwanapenentgndi f i c an
measurement processes. In particular, investments in mo#bgaged securities appeared to be

much riskier than banks originally anticipated. Consequently, the subprime mortgage crisis in the

US caused lots of banks to craslhl amnggered a worldwide debate on financial market

regulation.

Current credit risk measurement techniques are mostly based on evaluation of ttad-nskue

of a creditor, i.e., the amount the creditor will lose with a certain probability as a result of
delinquency of debtors. The distribution of the losses is usually assumed to depend on several
risk indicators, usually linked to the riskiness of the debtor and the conditions of the loan. Most
credit risk models are based on two indicators: the (condiliprobability of default (PD) and

the loss given default (LGBY both of which are supposed to depend on other underlying
factors. In particular, the probability of default of an individual is dependent on his/her solvency,
which is usually assumed te llriven by a factor common to all debtors (i.e., the

macroeconomic environment) and a factor reflecting the specifics of the individual (i.e., his/her
ability to increase the value of his/her own assets). The loss given default, on the other hand, is
dependent on the contractual conditions of the loan, mainly on the value of the collateral.
Collateral value is typically assumed to be driven by one or two (the common and the individual)

factors; the simplest models, however, take LGD as fixed.

TheBasell{ Bank for I nternational Settl ement s, 200

to credit risk measurement assumes that LGD is fixed, while PD is modeled by the famous KMV

“"PD and LGD are usually referred to as risk factors; he
verbally distinguish betwedhese main quantities and the factors that drive them.
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(MertonVasicek) model (Vasicek, 1987, 1991, 2002). In this model, the solvercgeditor is

supposed to be driven by two standard normal factors (the common and the individdial one).

In our paper, we question three of the most restrictive assumptions of the IRB approach: the
normal distribution of all factors, the fixed LGD, and #tatic nature of the approach. In our
model, the (two) factors driving PD may follow any distribution, LGD is random and driven by
two factors, and, moreover, our model is mpkriodic with the underlying factors allowed to
follow a stochastic process aih arbitrary type. We show how a suitable version of our model is
able to explain the credit losses observed in reality. In our opinion, our results might be useful
for credit risk management in banks, specifically to determine more precisely the tbepital

banks need to hold to protect themselves against unexpectedly large credit losses.

This paper is organized as follows. In the first part, we summarize the current state of knowledge
in the field of credit risk modeling. In the second part, we desoub@roposed methodology

and extensions of the current regulatory framework. Then we test our approach using empirical
data and compare our results with the Basel Il IRB model. Finally, we conclude and provide

ideas for further research.

3.2 Current Credit Risk Measurement Methodologies

In this section, we describe more precisely the idea of aatitisk models for credit risk,
summarize the basic facts about the Basel Il requirements for credit risk modeling, and suggest
ways of overcoming their shortfall

12Basel Il is a widely known and accepted set of principles for banking capital regulation. IRB is one of several
credit risk quantification methods described and allowed in Basel Il. The curremplgsed Basel IH-the
supposed successor of Basel lises the same risk quantification model as Basel 1.
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3.2.1 Current Credit Risk Models
In the past three decades, the methods used by banks to determine the riskiness of their loan
portfolios have evolved from simple averaging of past losses to complex models that combine
the estimated riskiness of individidoans. The most influential models include CreditMetrics
(RiskMetrics Group, 1997), which uses transition matrices to determine the level of defaults in a
portfolio, CreditRisk+ (Wilde, 1997), which assumes a Poisson distribution for the default
frequerty, and the KMV model (Vasicek, 1987, 1991, 2002), used by the Basel Il IRB approach
and generalized in this paper. A comprehensive comparison of these methodologies can be found
in Crouhy et al. (2000) and in Gordy (2000

3.2.2 The KMVModel
The KMV (Vasicek)model assumes that the wealth of an individual follows geometrical
Brownian motion and that the values of the assets of individuals are correlated, which is
equivalent to saying that the i ndatwanddamal ' s we
idiosyncratic part (see3(1) and 8.2)). While the systeatic part might be interpreted as the
macroeconomic environment, the individual fac

personal wealth over time {Yeducation, health

In paticular, the KMV model assumes that the logarithm of the assets ftthedividual

fulfills
logh, =logA, # +X. 3.1)
Here,A,i s t he i ndi vi dua/andg aweoadtant, an;tisartandore zer o,
variable fulfilling
X =Y +Z’ 32)

BThe systeratic factor is exogenous to both the KMV and to our model. For interesting research into the relations
of systenatic factors among vaous financial and insurance sectors, see Billio et al. (2012).
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whereY is the common factor and,, Z,,» are i.i.d. individual factors, independentYof

Defaulti s defined the state where the value of an

thresholdB; t hi s threshold is usually interpreted

installments at least). The probatyilof default is then

PO=PRA, | gHX g tel (33)

The KMV model assumes that the factdrand Z, i =1,2,3,» n, are centered normal with

such variances thaiorr( X, X; ) = r for some prescribed and each , j.

After some calculations we obtain trete of defaul{RD)4, defined as

_ number of default

RD ,
number of loans

(3.4)

which approximately fulfills

%Jl_r) N'i;;) -N *(PD) | 05

P[RD¢ ¥ =N
¢

given a sufficiently large number of loans. Heke denotes the standard normal cumulative
distribution function and®D=PD*®( f or mor e details of the calcu

follows that the distribution oRD is heavytailed, with the heaviness of the tail dependent on the

correlationr .

Finally, since LGD is fixed, we may take it as a unit without any loss of generality. Thus, in the

KMV model the credit Iss L of the portfolio equalRR.

1 The quantity which we call RD is sometimes calledehmpirical or observed PDWe use a different name so as
not to suggest that RD is an estimate of PD (it is clear f&8) that RD is ngher unbiased nor consistent).

5 Note thatPD, = PD for any i because the individual factors are equally distributed.
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3.2.3 ExistingModels withRandom LGD
The biggest shortfall of the original Vasicek model usually discussed in the literature (see, for
example, Cipollini and Missaglia, 2008)tiee absence or randomness of LGD. Several recent
models assume a random LGD; however, as far as we know, none of these studies challenged the
assumption of standard normal distribution of the risk factors. In thisettipn we describe
several of the mapopular models of this kind.

The simplest (and the most natural) enhancement of the Vasicek model for LGD is the one
proposed in Frye (2000), which assumes that LGD is a second risk indicator driving credit

losses. In this model, LGD is a function oflatgral:
LGD =max[0;1 -Collatera] ]
while the collateral value is expressed as
Collateral = m(1 +$C;),

whereC, is the risk factor, which can be further expressed as a function of a aystesk

factor Y identical to that driving defaults and a specific risk fadgori.e.,

C =JaY {1 qE. 36)

The loss distribution is taken from the Vasicek framework (i.e., fulfillgg)j with

X ={pY 41 pZ, 37)

which implies that the correlation between defaults and LGD is determined by how féctors

and C, depend on factoy .

An extension bthe Frye model can be found in Pykhtin (2003), who supposes that the risk
factor driving LGD depends on one systdimand two idiosyncratic factarstarting from the

same point as Frye
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C =yJaY {1 af (3.8)
E =JwZ «1 wg', (39)

where the systeatc factorY is common to both defaults and LGD. In this framework fagtor
also influences the idiosyncratic factor driving defaults (fa&oris specific toLGD). The

correlation between the two idiosyncratic factorsvisin practice, this approach is used by the
Moody model (Meng et al., 2010).

Another extension of the KMV model can be found in Witzany (2011). In this model LGD is
assumed to be driven by a specific factor different from the one driving defaults and by two

systenatic factors, one common to the defaults and the other specific to LGD.

3.3 Our Approach

In our proposed model, we, similarly to Frye (2000) and PyKRO03), assume a random LGD.
However, we look at defaults and LGD separately first and then offer ideas about how these two

can be linked through dynamic dependence of their underlying factors. While theodebfor

defaults is a generalization of Vadice s a p p r o a c 4modeltsla rew br@,Dnalsng flew
assumptions but naturally explaining LGD as a function of the price of collateral. As to the
evolution of the factors, we allow maxi mum ge

any model othe factors into our approach.

3.3.1 Model forDefaults
Analogously to Vasicek, we assume that

logA, =logA, , Y 4, , i nd (3.10
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wheren is the number of borrowerdy, is the wealth of the -th borrowe at timeti N, U, is
a random variable specific to theth borrower, andpy, =Y -Y, is the first difference of the
common factory, following a general (adapted) stochastic process. Such a setting makes sense,

for instance, ifY, stands for (the logarithm of) a stock index; then, our model corresponds to the

situation where a borrower owns a portfolio with sagne composition as the index plus some

additional assets.

For simplicity, we assume that the duration of the debt is exactly one Yennatithat the initial

wealth in each period equals
0gA, =Y, N, i M, (311

whereV,, is a random variable specific to theth borrower. Further, we assume @l , )i4n ( i

to be mutually independent and independertf ), and allZ,,Z, =U, +V,,,i¢n, ti N

to be identically distributed witleZ,, =0, var(Z,,)=s, s >0, Z ,, having a strictly

increasing continuous cumulative distribution functi@n Since the equation for wealth may be

scaled, we can assume tisat-1. Note that we do not require the increment3;db be

centered.

Even though the assumption of gmeriod duration of debts may seem very restrictive, in fact it
is not; even if the total duration of a mortgage is measured in decades, the periods between the
re-fixing of interest rates, at ¢hend of which the mortgage may be repaid, are much shorter

(sometimes as little as one yeHr).

It follows from our independence assumptions that the (conditional) probability of default of the

i -th borrower at time givenY, :==(pY ,» Y. equals

16 This is avery restrictive assumption, which is a point of our further research; howes@sshmption is the tax

paid for the model’'s simplicity

YAmultitperi od version of our model may al so be formulated
tractable only by means of Monte Carlo simulation.
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PIA<BIYl #Z tgB MY QF oB .Y (312)
where B, are the debts of thie-th borrower at timet .

Our primary topic of interest is the rate of default (Ri)jch we define in our framewors

number of defaults at : o .
R= . As nis the number of borrowers, the definition is equivalent to that
n

in the Section 3.2.2f we assume the debts to be the samalfdrorrowers and at all times, i.e.,

logB, =b,t IN,i¢n, for someb, and if we approximaty h 1 E , we

may apply the Law of Large Numbers to the conditional probabitigssribed in3.12) (we
may do this since? , A,,» are conditionally independent givéh) to obtain (for a very large

portfolio):
Yhe o, ©® wao &®hovah (3.13)
further implying that
Adhuw O w O (3.14)
and
Yhwwy Y A . (3.15)

The latter formula roughly determines the dynamics of the process of losses, while the former
one allows us to statistically infer the common factor based on the time series of the rates of
defadut.

Furthermore, we shall assume that fa@a normal, i.e.q is the cumulative distribution

function (CDF) of the standard normal distribution.
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3.3.2 Model for LGD
Our model for LGD is analogous to our version of the defaoltiel. However, contrary to the
Frye and Pykhtin models, we assume a separate common factor driving LGD. This choice is
quite natural, as the systatic conditions driving defaults are different from those driving LGD:
while defaults depend on many diffatevariables (e.g. average wage, unemployment rate, and
real estate prices), losses given default depend mainly on real estate prices. Note that we do not
assume independence of the factors driving defaults and LGD; as we show below, we allow for

any formof stochastic dependence on each other as well as on the past values of both factors.

Coming to the definitions, we assume that the property price oftthéefaulted debtor is
logP, =logg + &, , (3.16)

(or, equivalently,P, = g exp{ It} exp{ Et}), wherel, is an (unobservable) common factor
underlying LGD following a general adapted procdss,is a centered individual factor

independent ofl, ,Y,).., and allthe individual factors described in subsectad1 (i.e.,U;, Vi,

andz), anda is a constant reflecting the ratioofthe h debt or’ s property

factor.

Let C. be the size of thé-th debt, including the cost of recovery. Then the recovered percentage

of thei-th debt at time is

mln(.t,Q)
i C

(3.17)

Furthermore, letus sayth@ =C, 3 =ai ® andletE,,E, » beii.d. Given all this, we

may assume without any loss of generality tat1, a =1 (the constants may now be

incorporated intdl ). Then

G :min(e'”E"‘;l) =exp{ mir( | E, ()} (3.18)
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If there is a large number of defaulted debtors, then the aver&geisfby the Law of Large
Numbers,

~ N
Gt=limiaG, E(G| ). (3.19)
NN
Evaluating the righhand side (and omitting the time index), we get

éZE(é nin(Eyi- ;I |) ZéE( gin(Es: -I)I D :bgl'}:']@d Ff )( Ji'f(:l- F )I) -E

=¢ _II-”]e‘dF(x) 4 F( )
o (3.20)

where F is the cumulative distribution function (CDF) & . Consequently, the LGD equals
D =1G: k), (3.21)

where

h(i)=F( -) € Fed 3, (3.22)

or, after integrating by parts,

h(i)=¢ FE(X) &d>
o . (323)

As shown in théAppendix h is strictly decreasing, hence its inverse exists.

Assume further thak, is normal with variances*. ThenF (x) =0 (x /s ), whered is the

standard normal CDF and

(3.24)
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h, (/)=exp§e/+1— : 81 A @g- _a 814 —
5 2 % B UL

(@}

o

, (3.25)

where; is the standard normal probability density function and where the derivativésof

with respect ta. For the calculation 0f324), see thé\ppendix.

3.3.3 Econometrics of thi¥lodel

As already said, we plac® special requirements on the (vector) pro@ﬁsﬂi). We will only

assume that the process may be transformed into independent residuals in the sense that there

exist mapping<x,, Q,,» such that

Q(m: )= e . #Y,LY,L, »Y.|) (3.26)

for eacht, where/ is a (vector) parameter argl, g» is a sequence of i.i.d. tadimensional
random variables whose densitypossibly depends on a (vector) parameterGiven this
assumption and some invertibility and differentiability conditions (which would be better tested
in concrete cases), the conditional densitf\o;‘ It) given w_, is, by the formua for

transformed density,
u(y, 7./)7n(Qh ooy ) YT (vl (3.27)
where D, (y,/) is the Jacobian determinant Qf, restricted to the last two variables.

Suppose now that we have a sequence of historical RDs and RGDs, R,, D» ,R D at our
disposal and we want to estimate all parameters of our model,,i.e.ands . A

straightforward way to do thiis by maximum likelihood estimation, with the likelihood function
taking the form of
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L(R,D,» ,R, D/, m =
=égog(h(q(ma)) 4og(|D (Y1) tog(@ C@®)) )-§ hiwen)) (328)

(recall thatf, =q*(R,) -A*(R) | #*( D) Note that the third term in the square brackets

may be omittd during the maximization because it does not depend on any parameter.

3.4 Empirical Results

We empirically tested our proposed methodology on a nationwide retail mortgage portfolio and
compared the results with the Basel Il IRB framework. In this seatierprovide a detailed

description of the datasets we used, the estimation process, and the results.

3.4.1 Description of thdData
The dataset for our empirical work consists of quarterly delinquency rates on mortgage loans
from the whole US economy and was pdad by the US Department of Housing and Urban
Development and the Mortgage Bankers Associdfiddl data start with the first quarter of
1979 and end with the third quarter of 2009. Thus, the difficult period of the subprime mortgage

crisis and the subgaent real recession is included.

3.4.2 Estimation
To estimate our model, we proceeded as follows. First, we extractedYdoton the values of
R.. Second, we computed facldirom the values oD by employingh specified in 8.24); since
the functionh, which mapsD: to |, depends also gqrarameters , weestimated the model far

sufficient number of values of . Third, we found a suitable model for the dynamics of the pair

8 The Mortgage Bankers Association is thegest US society representing the US real estate market, with over
2,400 members (banks, mortgage brokers, mortgage companies, life insurance companies, etc.)
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(Y, ). Finally, we estimated theodel of the seriesy( 1) for eachs and chose the version with
the highest likelihood.

3.4.2.1 Extraction of Y
As a proxy for the rate of default (denotedmi) we used the series of 90+ delinquency Fdtes
depictedn Figure 3.1. We can see that the number started growing significantly at the end of
2007. During the estimation process, we used two types of delinquency rates: quarterly
delinquencies and their yearly averages. The average delinquencies were used for the
computation of th&asel Il IRB capital requirement because the IRB method requires-a long
term average probability of default as an input. The quarterly delinquency rates, on the other

hand, servedsathe input data for our model.
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Figure 3.1: The US 90+ delinquency rates — the proxy for RD (Ry)

The values of ¥'h ewecroemntoonmpfuat Betgo Thwerifymera ns of (
conjecture that the common factor may coincide with a stock index, we compared graphically the
values of the common factor with the S&P 500 stodeinGeeFigure 3.2). It can be seen that
the evolution of the common factor exhibits similarities to the stock index. A simple linear
correlation analysis indicates that the common factor is lagged behind the stock iraextby

two quarters and that iodatasets are significantly correlated (the value of the Pearson

19The 90+ delinquency rate is the proportion of all receivables 90 or more days past dueingugiter.
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correlation coefficient is about 30%, which is significant at 58dditionally, the autoregressive

analysis il Ga p k o ghowadnd sttong dependerdey on the S&P 500 lagged by one

quarter.
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Figure 3.2: Comparison of the common factor Y and the lagged S&P 500 index (values of the

common factor on the left-hand scale; values of the S&P 500 on the right-hand scale)

3.4.2.2 Extraction of |

As a proxy for the LGD (denoted B in our paper), the proportion of started foreclostfries
the 90+ delinquency rates was used. Unfortunately, the proxy cannot be exact, because it does

not include i ncome

idea of how large the losses would be in the case of no real estate coliatettadr words, the

col | ect ewever,it at lmasttghes usam | e o f

proxy represents all possible factors except changes in the collateral (residential real estate) price

movements. We are aveathat this is a simplification, however, the provided dataset is the (to

our knowledge) best availakdg@proximation of LGD for the overall US mortgage markéie
resulting series db: is plottedin Figure 3.3.

20 Foreclosure is a process whereby a creditor ceases all attempts to force a debtor to repay a seriously delinquent

debt . The | oan i s
triesto sell it on the real estate market.
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Figure 3.3: Foreclosures/90+ delinquencies — the proxy for LGD (Dy)

It is very interesting that, in the several recent periods, when the 90+ delinquency rate increased
significantly, the ratio of seriously delinquent (defaulted) accounts which fell into the foreclosure
process decread. This can be intuitively explained by state aid under which the Fed bought a

nontnegligible amount of bad loans, esjadly from the mortgage market.

3.4.2.3 Selection of thélodel for (Y, I)
The two time series used to estimate thetjmodel ofPD and LGD bkave in a different way
which is illustrated in th&able 31, where the descriptive statistics of b&randD: are
summarizedThus we analyzed the datasets separately and then estimate the mutual relationship.
After a preliminary analysis of the sesiefY we found clear ARCH behavior of the factor,

hence we decided to analyze the transformed version of the factor

D,
| D

Ve =

instead of its original values.
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Time Series Value (90+ Value

Statistic delinquency) (foreclosures)

Mean 1,1329 0,4343
Median 0,8300 0,3400
Minimum 0,4600 0,1300
Maximum 5,0200 1,4700
Standard Deviation 0,9869 0,3054
Skewness 2,5856 1,8730
Kurtosis 5,5353 2,5721
5th percentile 0,5570 0,1500
95t percentile 3,7190 1,2090

Table 3.1: Descriptive statistics of R; and D

The stationarity of both time series was rejected as the AugmentedPicky | er * s t est di
reject the unit root hypothesiBherefore, we suspected that the facasdl can be potentially

nonstationaryaswelyhi ch was confirmed by the Augmented

For a sufficiently dens elbygmdansoftheinversionbfand ues of
fitted the (vector) time seriey, () using a vector error correction model (VECM) with one lag,

i.e.,

Dy, = %y 4 ,Dgd (3.29)

d.=a, +gy, Yl..D g& ;. (3.30)

where Dy and DI are the first differences gfandl andeis an error correction term. For each of
the examined values &f we @mputed the maximum likelihood function of the VECM model
by means 0f3.28) and chosé = 12% as the estimate d&ince this value gave the greatest
likelihood. We found it very interesting that the estimataatuitively corresponds to the

standard deviation of real estate prices (Quigley, 1999).
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Figure 3.4: Graphical comparison of Y and | common factors

Figure 3.4 compareghe two common factors. $eemsbvious that tese two show some
similarities.To confirm whethera cointegration elationship existbetweenDy and DI, we
performed the Engebranger cointegration testhe results confirmed that both datasets are

nonstationary; however, the unit rdest of the cointegrating regression residuals showed that

we can’t reject the nDespite the test motconérmingsfullyootir u n i
hypothesis of cointegration, we decided to estimate the VECM.

The resulting VECM model witlY as thedependent variable in the first equation aimdthe

second one is summarizadTable3.2 (in accordance with the definition of the model,
cointegration rank 1 was assumed).
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15t equation (Y Coefficient Value p-value
dependent) (SE)

Constant 0.5522330.101865) 3.44E07
Delta y(t1) -0.169582(0.0914292) 0.0663
Delta | (t1) 0.1112330.0286587) 0.0002
Error Correction  -0.534066 (0.098286C 3.26E07
Term

2" equation (| Coefficient Value p-value
dependent) (SE)

Constant -0.299802(0.321560) 0.3532
Ay (t-1) -0.106660 (0.288617 0.7124
Al (t-1) -0.362746 (0.0904674 0.0001
Error Correction 0.293693 (0.310262 0.3459

Term

Table 3.2: Estimated coefficients of the VECM model

From theTable 3.2we see that the (transformed) factadepends on the past value of both
factors, while factot does not show dependence on the past (except the one caused by the
cointegration)Also, it is worthh mentioning that the dependerafeY on| is much stronger than
the dependenacef | onY. The R? of the whole model is around 30%hus wefound a
cointegration betwee¥iandl, which, on the other hand, is weaker than we expected (but still

strong enough to show a time series hatependency).

Since normality of the residuals from the VECM modeswajected (with gvalue lower than
0.01), we additionally fitted the residuals using the generalized hyperbolic distribution. This
distribution was first described in BarndeNielsen (1977), and it has been shown that it is able
to describe financialine series more realistically than, for example, the standard normal

di stribution (Eberlein and Keller, 1995).
(2010), where the authors found that the class of generalized hyperbolic distributidits thest

increments of th& factor.
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Before the end of this section, let us describe the derivation of the ML fun8i@8) i detail.

First, note that

-aM
0 qjt'bst

0

@D~ CD‘ %

Q

whereS, and M, are matrtes possibly containing past values of both (transformed) facttors
andl. Since, in 8.28), the termlog| D(Y, )= Hog(| ¥,|) does not depend on any parameter,

it can be excluded from the maximization, so the ML estimate can be obtained by maximizing

L(R. D> .R. D/, m Fég'og( ())esod o B) eod B{n( D))

= vnan) A log( (H2())), 331)

t=1

where L Is the likelihood function of the VECM modelg, 'g» ) are the residuals from the
i-th equation of the VECM model, arfgl is the density of the residuals (keep in mind, however,

that the residuals depend on the parameters of the VECM model).

Remark:To be rigorous, we did not proceed exactly according to Section 3 because we did not
maximize the parameer s of t he VECM model and of the res
both estimations are already implementedRIlanguage), it seems reasonable to use the existing
methods- to estimate the VECM first and then to fit the residuals. However, we pageafqr

this simplification: our estimate becomeguasimaximumlikelihood one instead of a

maximum likelihood one (because least squares estimation is an ML one only given normality of

the residuals).

3.4.3 Predictions
Having the model, we computed the qtilas of both RD and LGD on the 99'@ercentile
probability level, i.e., on the level used in the Basel Il framework.
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During the estimation, we had to solve a technical problem. The common practice is to measure
credit risk over a ongear horizon, while our dataset is based on quarterly observations. In order
to get oneyear predictions exactly, we would need to caleutatnvolutions of the (generalized
hyperbolic) residuals, which would lead to complicated integral expressions. Therefore, we
decided instead to use simulations for four consecutive quarters, using the formula

Rt+4 g ) R) - a [X,+) ’ (332)

1¢i &

which can be easily achieved by us{BdL5) four times consecutivelfechnically, this was

achieved by simulatiny four time periods to the future and deducting the sum of the predictions

from the quantile aR.

3.4.3.1 Quantile of RD
As was said in Sectin3, we assumed that the distribution of the individual factor driving

defaults, denoted by Z, is standard normal.

We compared the quantiles of RD calculated by our proposed methodology and those obtained
by the Basel Il IRB method (assuming standard nbdis&ibutions for both risk factors and a

15% correlation between the fact8)s The result is summarizeéd Table3.3.

Model Basel II IRB Our dynamic model

(through-the-cycle with GHD
PD)

Distribution used Standard Norma Standard Norma

for the individual

factor

Distribution used Standard Norma Generalized Hyperboli

for the common

factor

99.9% loss 10.3% 7.2%

Table 3.3: Comparison of Basel II and Dynamic GHD models tail RD

21 The 15% correlation is the benchmark set for mortgage exposures in the Basel Il framework.
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The results show that our model predicts a lower value of the quain®IE than the IRB
formula, which may seem surprising in light of the fact that we rejected normality of the
residuals in favor of a fatiled distribution. However, if we keep in mind that we use
information from the past to estimate the distributiotheffactor (which the static model does

“

not), we are able to predict” the factor mor

and thus explains ¢hlower value of the quantile.

3.4.3.2 Quantile of LGD
Similarly to RD, we computed the quantiles of D@y means of simulations again). The
resulting 99.9 LGD quantile calculated by our model, 40.6%, is slightly below the regulatory
45% benchmark. The other computed quantiles are summanriZathle3 4.

99th quantile LGD 99.9t" quantile LGD 99.99'" quantile LGD

29.8% 40.6% 50%

Table 3.4: Selected LGD quantiles in our model

3.5 Conclusion

We proposed a new model for quantifying credit risk, widely generalizing the IRB approach
implemented in the Basel |l regulatory framework. In particular, we extended the original model
framework so that both RD and LGD are considered, each being drivarelmommon and one
individual factor. In our proposed methodology, nearly any dynamic stochastic model may be

used to describe the dynamics of the (common) factors.

We applied our model to real data, specifically to the time series of serious credjudaties
in the nationwide US mortgage market. We used a VECM model with generalized hyperbolic
residuals as the model for the common factors. Based on the model, we evaluated the quantiles

for both RD and LGD, finding that our results are comparable tiéhevels prescribed by
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Basel Il. In particular, our results show that the Basel Il framework gives both higher RD and
higher LGD than our model. This is because our model, employing dynamics, gives more precise
forecasts of both factors. In the Baseaikthodology with static models, information from the

past is not exploited. Consequently, our results show that the current regulatory framework may
overestimate credit losses, which may result in higher capital requirements and thus higher

customer interst rates on loans.

The proposed methodology could be used as part of internal capital adequacy measurement in
banks or other financial institutions. However, there are still some unresolved questions and
suggestions for future research, including moraitket analysis of the relationship between RD

and LGD and an empirical a nsgportjosoi s of t he mode
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Appendix

In the Appendix, we provide mathematical details concerning the furittefined in Section
3.3. First we specify itslerivative:

Q- Q DOQAQZ 0 —Q

Q. 060QAZ 0 — QAQ

Q. 06 0—QA@ T

Second, we evaluate the function given thaherO is normal with variance :

0 q = Aoe %’A@a”‘b—/&@am
q - AQB-m:W Aob— wAQ@
q - AQB-M:W AP — o cn ., -, AQ
aqa - Azamzw Aob— o , -, AQ
qa - Agb -, _ M:AQE)—AQ
qaQ - AgB--, ~0, h —
qaQ - AgBp--, q -

(recall thatq is the standard normal CDF).
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4. Dynamic Model of Losses of a Creditor with a
Large Mortgage Portfolio

4.1 Introduction

One of the sources of the recent financial crisis was the collapse of the mortgage business. Even
if there are ongoing disputes about the causes of the collapse, wrong risk managemsiib s

be one of them. Hence, realistic models of the lending institutions' risk are of great importance.

The textbook approach to the risk control of the loans' portfolio, which is also a partRBthe
standardBank for Internéional Settlement, 2006j)s that of VasicekVasicek, The Distribution
of Loan Portfolio Value, 2002¥ho deduces the rates of defaults of the borrowers, and
consequently the losses of the banks, from the value of theWsos' assets following a

geometric Brownian motion.

In particular, the Vasicek's model assumes that the logarithm of the assetstbfitigdvidual
fulfills

0 O0RAGD 1O .

Here0yi s t he i ndi vi duadahds arexcersthntshandaisa randomme zer o,

variable fulfilling

where®is the common factor having a centered normal distributioremal F8 are i.i.d.
centered normal individual factors, independerb¢¥asicek,Probability of Loss on Loan
Portfolio, 1987)
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Default of an individual is defined by the st
decreases below a certain thresbojdhis threshold is usually interpreted as the sum of the
i ndi vi da(adudirng instalinbents at least). The probability of defautés

Sy - h

00 0b6g 6 0O ©, ®

After some calculations (cfVasicek, Probability of Loss on Loan Portfolio, 198} obtain
the default rate (DR), defined as

oY ,

approximately fulfilling

00Y whbo

given a sufficiently large number of loans. Hafegenotes the standard normahwulative

distribution function and
© AT G
It follows that the distributiond®'Yf s “-haa¥widt i the “heaviness”™ of
dependent on the correlatidn
We generalize the Vasicek's model in three ways:
1. We add dynamics to the model (note that the Vasicek's model is oabpenod one).

2. We allow more general distribution of the assets. In a nutshell, the main advantage of
our model is that asset increments can be described lppatiguouddistribution,
which potentiallyenables us to use a distribution that is able to fit a particular dataset

better than the normal one.

22 This means that it cannot be successfully approximated by etdidgd variable.
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3. We add a suodel of the losses given default which allows us to calculate the overall

percentage loss of the bank.

Similarly as in the Vasicek's paper, in our model, there is a@mpae correspondence between
the common factors and the default rate (DR), and the loss given default (LGD), which allows
for econometric estimation of the bivariate series of DR's and LGD's. fhiesg, factors can

have a general distribution of any kind.

To our knowledge, no dynamic generalization of the Vasicek's model incorporating the losses
given default has been published yet. However, our approach to the dynamics and/or common

modelling of IRs and LGDs is not the only one:

» There are more ways to get the relevant information from the past history of the
system, e.g. credit scoring from which the distribution of the DR maptaened in a
standard wayVasicek, TheDistribution of Loan Portfolio Value, 200®2)here the
distribution of the losses is a function of the probability of default) or observing the
credit derivativegd'Ecclesia, 2008)Another approach to the dynamics couédtb
track the situation of individual clien{&upton, Finger, & Bhatia, 1990y to use
affine processefuffie, 2005) The usefulness of our approach, however, could lie in
the fact that it is applicable "from outside" in the sense that it does not require a bank's

internal information.

* Numerous approaches to the joint modeling of DR and the LGD have been published
(see e.g.(Witzany J. , 201Q)Yang & Tkachenko, 2012JFrye, 2000)r (Pykhtin,
2003)and the references therein.) The novelty of our@ggh, however, is the fact
that the form of the dependence of the LGD on the common factor driving the LGD, is
not chosen athoc, but it arises naturally from the matter of fact. In particular, it links
the LGD to the price of the property serving aslkateral.( Gap ko & Smid, 20

* Inits general form, our approach does not assume particular dynamics of the common
factors econometric model of which can th
to( Gapko & Smsindpler versloh & pur modemultiple generations of

debtors are tracked in the presented paper.
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Our results show that applying our mwgenerational model to a specific dataset leads to a much

lower variance intte forecasted credit losses than in the case of the gjagkration model.

Mainly thanks to the fact that our econometric model uses macroeconomic variables to explain
common factorswhich is supported by several recent articlef, €gar | i ng, Jacobson,
Roszbach, 2007)t is able to explain changes in risk factors more accurately than a simple

model based purely on extraction of common factors from the series of DRs and LGDs. The

higher accuracy of the loss forectsn naturally leads to more realistic determination of a

guantile loss. In our particular case, the 99.9th quantile loss is lower than in the Vasicek's model.

The paper is organized as follows: after the general definitions (Sd@ipnvhere the modsl
of DRs and LGDs are constructed the procedure of econometric estimation of the model is
proposed (SectioA.3.) Sectiord.4 describes the empirical estimation and finally in Sectibn

the paper is concluded.

4.2 The Model

In the present section, vigroduce our model and discuss its estimation. Proofs and some

technical details may be found in the Appendix.

4.2.1 Definition
Let there be (countably) infinitely many potential borrowers. At the timews |, thei-th

borrower takes out a mortgage ofi@unto , with help of which, he buys a real property with
priced @ for some norandomQ 1. The mortgage is repaid by instalments amounting to

o o T at each of the imé¥ pRY ¢M RY i, wherel N = - the duration of the

mortgage- is the same for all the borrowers for simplicity.
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The assets of thieth borrower evolve according to stochastic pro@essuch that, between the
times the installments are pa@follows a Geometrical Brownian Motion with stochastic trend

i.e.
0 0 AgHd YO h ovwsh o %Y,

whered is a common factor (e.g. a log stock index) éngMY¢ 1 is a normally distributed
individual factor for each) ¢ with the same variance for ea€ly stands for aneperiod

difference).

The instalments are paid by means of selling the necessary amount of the assets, i.e.
6 o «h ovsh o V.

If 0 Tthen we sayhat the borrower defaults at

The priced of the real property seing as a collateral of the mortgage of th debtor fulfils

0 Ag@GYO YOO h o v,

(recall that) Q) ), where'Ois another common factor (e.g. the logarithm of a real estate

price index) and’O =~ mh, is an individual facta?®
The exposure at defati® (i.e. the remaining debt) of theh borrower at time fulfils
O no Yoh o Y

for some decreasing function fulfilimngp  ph) * mif t mort i (the shape off may

dependon the way of interest calculation and the accounting rules of the bank).

Finally, let

23|t would not be difficult to hav&¢ andYO non-normal for the price of loosing closed form formula for
functionQ(see further).
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be the ratios of newcomer s’ to 2t.hhe size of

Assume that the increments of the individual factors
Y& YO o YO 18
¥é& YO Wé YO 8
8

are mutually independent and independentafiai* .4 and that, for any, the initial wealth
and the size of each mortgage depend, out of all the remaining random variables] only on

where
1 QRO FOROT M8 hidhat
is the history of the common factors and the percentages of the newcomers up to the start of the

mortgage (see (C) in Appendix [sec:Appendix] for details).

Until the end of the Sectioh2, fix 0N & and assume that the potential borrowers are numbered
so that only those who are active sikceptoo(i.e. thosewitto i Y 0 p)andwho

did not default untib p are numbered.

4.2.2 Default rate

Introduce a zerone variable) indicating whether theth borrower defaults at

0 0 T o) IR O O e Yo Yo 1 1aC (4.1)
where

. o
w -
(0]

is the value of assets per unit of the mortgage. The first topic of our interest will be the

percentage of defaults (i.e., the percentage of the debtors who defau)ted at
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0 h i E4B ©.

It is clear from(4.1) that we may assume, without lossgeherality thati 1aC Tt (if not than
we may subtradt | cfrom the increments of the common factor). Moreover, we may assume
that the variance of¢ is unit (if not then we could divide T¢C  and¥Y® by its standard

deviation).

Thanks to Lemma& (see AppendiA.1), we may, similarly tqVasicek, 2002)apply the Law of

LargeNumbers to the conditional distribution @f given]  to get
U MuU s ~n U o3

and compute it, using the Complete Probability Theorem, by formula
~0  p3 ~Y i3 ~0 psY ih

From the definitions, and thanksdoo (see AppendiA.1),
~0  psYh ~T TG Yo Yo mUYh W  Yosyh

wherewy 3ih isthec.df.ol T¢C Y& given 1 h"Y i, and because
~TY Qg ~Y 08 by Lemmay7, we are getting:

Proposition 4.1

O B Nk W Yodh o, (4.2)
where
N hl ~TY g
*
Note, that, by Lemma@ (see AppendiA.1), w FYh is a strictly increasing c.d.f. of a

convolution of two distributions, namely thatiofi &C and the standard normal one. Note also
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thatfy 1 is in fact the percentage of delstarted at, and preserih the portfoliobetween
timeso pando.
Corollary 4.2

For each , there exists a one to one mapping betw®amd0 given by(4.2). In

particular,

<
e
C,-
an
¢

e

4.2.3 Loss given default

Since the amount which the bank will recover in case of the default pfitdebtor at time@is
"O | EDHKRO

61 ETQRA @D YO YO Mo Y

6 Ao ETQ YO YO H1go Y

we get that the percentage loss given defaylte. the ratio of the actual losses and the total
exposure at default, is

.B 00 O B 00
U | EH o P I E"f,
0 B 00 B 00
Proposition 4.3
B Rk o v~
0 p REErr— 3G 0 0 (44)
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where

"fr N0 T Orw 3®Ih N/ f1 A QO MOSY iR ]
and
N — A QBZ\K — WT_ nt, nt p - WT_
S nt, nt,
T 1igt 11738

and where is the standard normal distribution function. The funct@ns strictly increasing.

Proof. See appendik.2

e

Corollary 4.4

For given there is ondo-one mapping betwedn andQ given by(4.4). In particular,

O |y p 0N (45)
where
p .
Fo— "Rk Q30 —
l. h B iﬁﬁ hh h

4.2.4 Next period
Now, let us proceed to the portfoliotae next period: After renumbering (excluding the
defaulted borrowers and adding the newcomers) we get.
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Proposition 4.5

QiQ o
Nh P Ok (X BRI T
T EMMi QI Q
where
O] AY D Tt 1
, P w  30d§h
n kil S U a——
P W 3ws P W 3D I i 7
and
I oW o
~]1 TaC asY ih T W & 30dn }u,vmsn £ ®DI 0 Of O
P W 3wdh
foreachd mwherd ; ¢ ~ a£™Q 4 1 RY &
Proof. See appendix.3
»
4.2.5 Econometrics of the Model
Say we have the sample
“Rh A D DMBARE DD (4.6)

at our disposal and want to infer (some of) the parameteng ofiodel, whose complete list is
~ R~ OFo Oh Ao Ofi 50h, 4.7)

Clearly, some further simplification of such a rich parameter space has to be done. For simplicity
and computability, we decided to postulate valfesll the parameters except of
~ QA N Din the empirical part of our paper so that we are able (recursively) to evaluate

the transforming funabnw and| independently on unknown parameters and the econometrics
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of the model reduces to the oofethe factorsy andl. In other words, the values of all parameters

except of~ O N O were chosen based on empirical observations or expert judgment.

4.2.6 Numerics of the Model
Generally,w is a convolution of truncated (normal) distributidtiee defaults are due to the
truncations). We chose the Monte Carlo simulation ag#siest way of the functioasaluation

which was done in the Mathematica software.

Since the formula fow is recursive anéhvolveswy 8 fy , which are unknow at the time

ohwe acted as if the borrowing begardat p, i.e. wetookry ; pandfy; Tmforalli p.

4.3 Empirical estimation

In this part, we describe the estimation procedure of the previously introduced model. The final
result of the estimain procedure is a loss distribution and, in particular, a mean predicted loss

and a predicted loss quantile on a-g@rter horizon.

The estimation process can be divided into three separate parts: the extraction of both common
factors from a historicalataset, a prediction of these factors based on an econometric model and

finally, the calculation of future mean and quantile losses given the future values of the factors.

4.3.1 Data description
We used the same datasetagGra p k o & S nid, alhistorkdl datidet of mortgage
delinquencies and started foreclosures, provided by the Mortgage Bankers Association. In our
model we took the 90+ delinquency rate at the tiras the default rat®, . Unfortunately, to
our knowledge, there is no nationwide public

portfolios that could be considered as our loss given detaultherefore we constructed its
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proxy by the rate of started foreclosures fromNlwtgage Bankers Association and an index of
median prices of new homes sold from the US Census Bureau. In particular, because the
foreclosures dataset consists of all mortgage loans that fell into the foreclosure process and does
not describe how succeakthe foreclosure process was, we discounted the foreclosures by
estimated average values of the collaterals in the portfolio; even if, as we realized, our proxy of
the LGD is apparently an ad hoc one, it reflects the fact that the LGD grows with degreasi

prices of collaterals.

Formally, we put
0O ©Oh
whereO is the 90+ delinquency rate at the tionand

N O i
v —
Ov
where"Ois the unadjusted rate of started foreclosures from the original datasetand

estimated average valueatdllaterals in thgortfolio calculatedas

o 2R3 h fg o-h
0 L M L

wherel j is the number of individuals in tHeth generation at the tim — the proportion of

individuals of thé€h generation in the whole portfolio at the tima the value of the house
price index at the time (recall that we assume unit price of all the collaterals at the start of the

mortgage and thai j is a function of the observed data).

Both dataset entering our calculations are depicted on the following chart (in percentage of the
total outstanding balance).
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Figure 4.1: 90+ delinquency rate 'f<and the loss given default 4

4.3.2Choice of Parameters
In order to extract the rate of defaaitd the loss given default, which is the first step in the
estimation, we needed to restrict the number of parameters in the extracting functions given by
(4.3) and (4.5). The parameters

o Oh Fom Ofi 50,
were further postulated as follows:

1 The length of the mortgage, was set to 120 quartef30 yearspased on the lontgrm
average taken from the U.S. Housing Market Conditions survey published quarterly by
the U.S. Department of Housing and Urban Development

1 The variance 0O (the individual &ctor driving the property price), ig,of the
distribution with the c.d.f. equal t§ was set at 0.12 because this value was found to be
the one maximizing the lelikelihood in the singlegeneration moddl Gap ko & Smi d,
2012)
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1 The size of the loato-value ratioQat the beginning of the loan is set to 1 (ie, the full

mortgage nominal is collateralized by the borrower's propehig)is a simplification
and a possible point for the model enhancement.

1 The quarterly integst rate, which determines the functipris set to 1%the functiom)

uses the quarterly simple compounding interest to determine what amount of a mortgage
remains to repay

The standard deviation of each newcoming generation's w¥aklassumed tbe
normal with standard deviation equal to 5

The parametes>- ie, the expected size of the mortgage, is assumed to be the same for all
borrowers

Other parameters, eg, the split on individual generations in a given period, can be calculated
directly or cerived from our assumptions. For a better understanding of how the original datasets
0 and0 are translated into the common factérandQresp., we include a comparisonloind

@ (Figure 4.2) and0 and@Figure 4.3). In theFigures4.2 and4.3, the values of the time seri&®

and0 were adjusted to overlap the corresponding time sérasl, resp.(i.e. 0 multiplied by

100 andQOnultiplied by 10, so that the lines benefit from a single scale representation).

Ln

iy
I
—
—-—

(o]
I
I'\.
4y
',
-

Figure 4.2: The comparison of ||'= (blue) and L (violet)
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Figure 4.3: The comparison of d (blue) and I=(violet)

From the beginning of the dataset, there was a sustained growth of house prices, which caused
the collateral to exceed the mortgage outstanding amount and thus eeé¢healsGD. However,

in 2007, there was a downturn in housing prices and this is reflected in the increase of the LGD.
From theFigures4.2 and4.3 we can graphically deduce that the evolution of both common

factors might follow some trends, which suggests that there could be a dependence on several
macroeconomic variables or stock market indexes. Thus, we chose a Vector Error Correction
Model (VECM)with several exogenous macroeconomic variables, namely GDP, unemployment,
interest rates, inflation, S&P 500 stock market index and the EUR/USD exchange rate, to capture
the joint dynamics of the common factossind’ONote that we couldn't use any #iof real

estate price index as the LGD values were adjusted by using such an index. Adding it would

establish an unsought autocorrelation into the VECM error term.

4.3.3 Estimation and prediction
The VECM estimation was performed in the Gretl softwBirst, the stationarity tests of both
VECM endogenousariables, igyandQwas performed and in both cases, the augmented
Dickey-Fuller test rejected the stationarifhe Johansen's cointegration tegécts the absence

of the first order cointegratiobetweerid and@n thel0% probability level(seethe Appendix
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A6f or detailed results of the Johansen’s coint
vectory. Moreover, the first VECM equatiorxplaining@, shows that it strongly depends

the yearon-year GDP growth rate. No other macroeconomic variatmasideredvere found

significant in this equation, even after lagging them up to four quarters. The second VECM

eqguation, explaininialso shows dependency on one macroeconomidil@fianemployment

rate. Therefore we left the tvaagnificantvariables, ie, the GDP yean-year growth rate and

the unemployment rate in the model. The following table summarizes our findings. It is obvious

that the model is able to explaimwith a mwch higher predictive power thd@which is probably

caused by the fact that changed@fe based on a proxy instead of the actual LGD.

0.2

-0.2(]

-0.4

-0.6

Figure 4.4: Returns of 1 (blue) and (violet)
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Dependent variable L(s.e) Ks.e.)

constant -0.0098 (0.03) -0.14*** (0.04)
d1 PD common facto 0.96*** (0.04) -0.17*** (0.05)
d1 LGD common factot 0.13* (0.07) -0.24*** (0.09)
GDP yearonyear 0.72*** (0.23) 0.027 (0.3)
Unemployment rate -0.05 (0.39) 1.07** (0.5)
Error correction term -0.0067 (0.004) 0.016*** (0.006)
Adjusted RZ 91% 15%

Table 4.1: results of the PD & LGD common factors VECM estimate

Thus the final pair of VECM equations is:

O MBI PE @ T U0 1 Q000 18 WYE Q& &€ & T X
06

0 T X T 0 T8¢ YOOD pstyIYE QAN &£ &P GO

We also performed tests of both normality and autocorrelation of residuals. All tests show that

error terms of both equations are not autocorrelated andxamattely normal.

After the model is estimated, we constructed a prediction of the common factors. To calculate
the predictedv andQwe needed a prediction of exogenous variables in the model, ie, the GDP
yly growth rate and the unemployment rate. Aaweasured the credit risk only, without an
influence of deterioration in economic conditions, we assumed that the unemployment rate
stayed for the prediction on its last value and the future GDP change is zero. The following two

charts show the developmaafti (Figure 4.5) anddFigure 4.6), including the predicted value.
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Figure 4.5: Development of L with the predicted value (blue) and the prediction standard error (green)
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Figure 4.6: Development of Ewith the predicted value (blue) and the prediction standard error (green)

4.3.4 Prediction of losses

The remaining step was to predict a mean and a desired quantile losses. This was done by an
inversion function to the factaxtraction functions (see (4.3) and (4.5)) in the Mathematica
software, by which we obtained predicted DR and LGD. These two values were then multiplied
to get a loss. The mean loss prediction is quite straightforward as we already have the predicted
values of both common factors. However, the quantile loss has to be calculated from the quantile
value of both common factors. To be able to compare our quantile loss with the IRB model, we
chose to simply calculated the 99 Quantiles o) andthe 99.9" quantile ofd) and then multiply

then?4. The calculation of quantiles 6fandd from the quantiles adand"Qvas done by the

24 The 99.9th was chosen to reflect the IRB, which calculates the capital requirement for credit risk as a difference
between the mean (expected) loss an®theth quantile loss. Usually, the 99 Quantile loss is interpreted as a
multiplication of the 999 quantieofQand a “downturn” LGD "guagileall).l y cal cul at
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function (4.2) ford and by (4.4) fof. Quantiles of common factors were obtained from their
prediction standard error and the assumption that error terms of both VECM equatidrab(see

4.1) are normally distributed. (Recall that we were not able to reject the normality). Thus,

O g @ , D TBOWWWE Q

O ¢ 'O, 2 m@ouh

where®w g andO g are 99.9th quantiles of the factebendQresp. andO are the

common factors predictions, and, theregressiorstandard errors ang T@o w candy T8O L
the 99.9" and the 99 quantile of the standard normal distributioesp We constructeca one

guarter quantile loss prediction.

Because the Basel Il IRB method calculates a twelve month forward quantile loss, to get a one
guarter loss weivided the PD input (last DR value) by two (becaudee debtaser ' s asse
assumed in the IRB model to be normally distributlkd,quartdy PD is exactly one half of the

oneyearPD, according to the convolution of the normal distribUtidke used just one quarter

for all the predictions. Both the comparison of the predictions of mean losses calculated by our
proposed model and the IRB, and the comparison of the predictions of quantile loss are

summarized in th&able4.2.

Model Our IRB

meanloss 0.84% 0.78%

1.23% 3.75%

Table 4.2: comparison of our model's and IRB losses

99.9th quantile los:

For the IRB model we have used the last value of default rate as an input for the PD and the last
value of our adjusted LGD time series for an LGD. The difference between the IRB and our
model computations is that the IRB treats LGD as a fixed variablereah in our proposed
approach, we constructed a model for LGD predictions. As we can se@&dfben4.2 our

model predicts much lower quantile loss. This is due to the fact that the explanation of the
development of default rates and LGD by our modetush neater than a crude-hdc

approach of the IRB and thus the standard deviation of loss is lower.
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4.4 Conclusion

In the present paper, we suggested an estimable model of credit losses. The model is based on
the assumption of underlying factors theg driving the probability of default and the loss given
default. The two novelties of our approach are the multigenerational dimension of the model and

the estimated relationship between underlying factors and a macroeconomic environment.

The empirical égmation shows that the model leads to more accurate predictions of future mean
and quantile losses than in the Vasicek's framework. This might lead to a saving in the amount of

capital that is needed to cover the quantile loss.

Even if the model is rathgeneral and thus a bit more complicated to estimate due to the number
of parameters, a bit less could be assumed if a user wished it, especially

1 The distribution of the individual factors need not be the same in all periods but it might

depend on théme and orthe past of the common factor
f A dependence of thadividual factos YO and¥c could be established

While the first generalization would not change our formulas much (some indexes would have to
be added to the present notation) tbeosid one would bring the necessity to work with a
conditional distribution o¥Ogiven not defaulting, for which no analytical formula exists, even

in the simple case of normal factors.
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Appendix

A.1 Definitions and Auxiliary Results
First, we have to take into account that the borrowers have to be renumbered in each period in
order to remove those who defaulted or fully repaid their mortgage and add those who came
newly. Let us assume that the renumberingistdone as follows: orcthe indexes
phch &HQ p are assigned, a random variaBleis drawn fromthe Bernoulli distribution with
parametel . The indexX(s consequently given torewcomerif O  p or to the first

unindexed borrower who did not defaulbatnd does not repay fully his mortgage,at

O 1 Let us denotéY the starting time of the debtor, indexed'@t o.

Now, derote,

and
m MR hO hd FO 18

for © Tmand note that, as the distribution@fdepends only oh , which itself is a part of the
vectorl , we have thd® is conditionally independent off FO HO B HO HO B given
1

Further, we have to formulate rigosiy theassumptionsoncerning the distribution of the

e ey

6y NYy , where

F

for any'Gando, 6 ;hYj is conditionally independent o h 6 ;AY;  given , and the

conditional distribution of 6 ;hY; given] equals for allQ
Finally, denote YOO . andassume that
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variablestd RYh) RYR8 are mutually independent and independent dfyy for anyd T,

such thato has the same strictly increasing continuous conditional c.d.f. gitfen eachQ
Now, let us prove that

Lemma 6

For eacho Tttthe following is true:
= <

For any’Qd 18 is conditionally independentof hY o given’Y h ,such that

@ has the same strictly increasing continuous conditional c.d.f. for each i

Proof. Let us proceed by induction: For T, the assertion follows froe . Now, assume
= <« and try to prove= <« . Let"Q =. From the basic properties of conditional expectations,
we have

~ @ ®Oh RhY | hd

Ny

~ Y ®Oh hY  ha ~ Y ol 10
~ O 0Oh hY | ho M “oOh hY  had fTo n
where

~

“@ ~ & @ ORY RY hd

Ny

and U is the index of the borrower indexed &t 6 given the numbering from p. On the set

0 Q we get

‘@ ~ & Yo Yo o ORY RY A A&
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Moo YO Y& obhORY Vo A Wh ORY RY A h&
M " @ ORY RY  _h Mhd h
where
" W Yo Yo @ @ Y& Yo mRY R
the 1 ast *“==«) whers, bydhe textbioak calculation

‘ U - w o 30dh  w sodh
) oY h oh —
I h I h TR YL

ontheseb 0 mHY Y .Now, because) QOO0 and0 "Q., cover the set

O 1, we have by Local Propert{(Kallenberg, 2002)Lemma 6.2) that

“® [ aiYh

on O T finally giving

~® ® hY | hd

Ng
MY o - [ GiiYh . 1 hY [ hd
M ~7Y o8 e I ahiYh . h
(8)

where the |l ast "=7 1is du® ofnp, handee « c oisipdoved.i o n a |

»
Lemma 7

For any'® 0, "Y is conditionally independentpf hY , given
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Proof.Foro Tmthe Lemma follows fror&= . Lett tand let the Lemma holds for

o Tt p.ie,

By our construction;Y is a function of Y where0 is defined by the prgous proof Similarly
to the previous proof we show that, an "Qthe probability thatY i given all the variables

@ dependsonlyon and on" .

*
Lemma 8
0 h) B are mutually conditionally independent given
Proof. It follows from Lemmab that0 is conditionally independent off RY given
1 RY . Thanks to Lemma and independence wériablessc>Xwe get that'Y s
conditionally independent o) RY given] which gives the Lemma by the Chain rule

for conditional independencdKallenberg, 2002)Proposition 6.8).

A.2 Proof of Propositior8
By (Kallenberg, 2002)Corollary 4.5.

0
o)

1 Ed B
(¢]

| Ed B
o

C Cn

b p

Further, by Lemm®& and by the independence of variabi@$he summands in bosums are

conditionally independent given , hence, by the Law of largaimbers,

1 Ed 00 MO O3 MM 0O O3 RY 3

(0]
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in

in

'QX hd

in &
MO0 AY iM0O§ RY
MTO3 RY iM0s RY
:thh Q 3‘@
QN — QVA @O Q- QR
and analogously,
| Ed 00 tri
As to"Q we are getting
N — QVAZBAGPE R
a0 QB w Q p B
Q QB w no i p B
where isac.d.f. mh, -whenweput Wi,,we get
ng“ *
P agpl & ° P na
ng“ ™ S S
d) e
AQB" éAQDf’Q(b
C Mc“!l c

Rl

Rl
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y 0 —
A Qg“ N U 143 H! U I A QBH ° — w
q C
hence
0 —_ - 0 —
0_— oAgBi, — 1T, fi p - ——" 8
c Ml ” Ml ”

The monotonicity is proved by the fact that

TT_E_ ®BE O -0 B ©QQ®
B O — QQ6 B ©QQa®
(o) 5 0 -00Q0 5 ©QQ®
(o) 5 6 — B ®QQo ™

A.3 Proof of Propositiorb
The factthat]; “ follows from the definition, as well as the fact thgt rmfori 0 1i.

Leto i i 0 andletd be the previous index of the borrower indexedChto (it can be eg,

a zero if the borrower is a newcomer). Cleai¥y, i ¢ $ 1 3 Owhich implies

Y i1 ~0 mY i1 7

~ ~ , Ly ~

9)
Further, as
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we have, from the conditional independence

~Y {0 @O mm ~Y {0 mhY 0 ih
~Y il mhY 0 i1 7
~ 0 TY o i1 ]
AY iR m
~ 0 m ~ 0 Ty o6 i1 ]
~0 mY iR 1 7Y 01T
~ 0 T T ~ 0 TmY o ih 1 ~Y 0 17

p

W 30dgh n

P W 30

h
P Wy 30 ih N r 1

which, not being dependent &may be pulled out from the sum(@.

The formula foro is proved similarly td8).

A.4 Calculated | and Y factors values

It
-0.5085704994306764
-0.5652179040619789
-0.6003286726860134
-0.7142846940288936
-0.7089909630863085
-0.7296087627792128
-0.8315862085305106
-0.8747250743449888
-0.9321022932466507
-0.9860740928505496
-0.9858812516808483
-1.0546798131712412
-1.145392089822586
-1.1751966741339186

Y_t
0.1750314224323941
0.29499719362208887
0.39726324690304315
0.4831112931300562
0.5663748188399981
0.62177922672209
0.6441704838440533
0.682030325836802
0.6858068582489915
0.7405781071561675
0.7577703785643948
0.8184914895224069
0.7888497569859749
0.775126515775665

96



It
-1.204994385192282
-1.2648677941577025
-1.260374426704848
-1.3500983104660855
-1.3369241183442202
-1.3959845393225698
-1.3720450761896632
-1.4661322775399819
-1.521125870894923

-1.470950517947169
-1.5679739732370455
-1.6234246412146365
-1.621815068122503
-1.6518621741666402
-1.7151686515242597
-1.7429709850430082
-1.7967922300621437
-1.8625266685037791
-1.8919278860619082
-1.9500296887890578
-2.0254666334766185
-2.089506961283927
-2.1316710987302976
-2.1788597478638367
-2.226520388009039
-2.2777508058634357
-2.367188234052972
-2.594356033029133
-2.623541508469589
-2.655889675010422
-2.7849465612772697
-2.834434509674115
-2.9258144719173815
-2.9017781740620467
-2.9780728286101437
-3.082126572614423
-3.141079492999823
-3.215099626032445
-3.2488734100415506
-3.2641663842983104
-3.323310264895081
-3.461740546955769

Y_t
0.7232628751690667
0.6632669319563341
0.6583394306796603
0.6403376031522052
0.6451641723491223
0.6232469136022897
0.5865533336011293
0.5940264737705111
0.5672149289185254

0.5263431815334215
0.49789457212455956
0.5019103505517739
0.4875356085556648
0.4396282008924923
0.4109841958469174
0.32515617728602303
0.3100144978177349
0.3081501781065848
0.2787210204651825
0.3255752965436441
0.3950295288920353
0.41605229267203253
0.47216029243711627
0.4983019007057647
0.5844420997329862
0.6292435689470355
0.6857891494125798
0.793265394561697
0.8896939710333649
0.9614458230550806
1.0832541224488552
1.1663248530853085
1.2419643894700658
1.3040355528285077
1.3666716897090283
1.3937441423074184
1.4168865758521243
1.4378472491515306
1.4924037581671599
1.5085738460642748
1.5682211183943218
1.6670219549897594
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It
-3.4919983930611553
-3.559792024846867
-3.593055705493035
-3.6759506164820945
-3.7324532575324296
-3.810294058415235
-3.916957096881624
-3.9727811065858822
-4.040798354571718
-4.09948038181535

-4.126705632853109
-4.282073231913425
-4.45807091967635
-4.554001558418366
-4.700553586639593
-4.800448068721535
-5.025636371994059
-5.144405586880597
-5.232449146312347
-5.315362276622163
-5.391198274264772
-5.488498722219545
-5.589986709233622
-5.755159332299376
-5.721204447655005
-5.982769682007945
-5.934641473210264
-6.067801131025043
-6.165165793387324
-6.130527783445086
-6.442817423082921
-6.37748590441058
-6.357131532218663
-6.468428808140153
-6.485003801424921
-6.430964814163771
-6.496787410453988
-6.571742935480333
-6.496945467286127
-6.493495277547879
-6.530422790657934
-6.409450781122464

Y_t
1.7178038176817647
1.7745752374061303
1.8551937470012327
1.9295322483218422
2.0119527618635393
2.0369920679564513
2.122115778729583
2.2144681272152598
2.329177803058618
2.381594273869628

2.4230376958972113

2.5690930936642893
2.6627834002645407
2.822242326907804
2.983432728717481
3.1096777136749996
3.2483920342861388
3.396950555671169
3.563173763135644
3.6438185605119937
3.6859169963916907
3.8107749091389342
3.9388572504064294
4.042711954406166
4.144359576488124
4.247016201093456
4.40610974416346
4.533408337128003
4.695116831740003
4.821349614109967
4.920074694177565
4.942613452907782
4.962394123435942
4.929488297901919
4.895025598134301
4.884997791830792
4.923402339718606
4.877755342046011
4.844222462613068
4.871753707722411
4.906942159577974
4.876018307094994
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It
-6.586804210438476
-6.660044635243046
-6.680176973574653
-6.635464917782348
-6.686936649990608
-6.769848471880518
-6.753934617729041
-6.747612136694832
-6.7972248093633505
-6.739863311297612

-6.749001028313339
-6.821725233325911
-6.884861152879483
-6.98646857435743
-7.057653114118144
-7.109802025416156
-7.183184631816278
-7.191606185092257
-7.2955414604882405
-7.419561716076927
-7.309811733979121
-7.215072218263964
-7.284428929963496
-7.34812392952542
-7.271114630884305
-7.195429609139502
-7.189447577803872
-7.178559216759887
-7.3228487609341855
-7.412594594693715
-7.385587164982854
-7.374518201029718
-1.477512757618346
-7.538693072005547
-7.573463355480406

Y_t
4.891653353971619
4.969424922364519
4.95397406620541
4.998234060406817
5.056231411087124
5.092698314368622
5.116752373834525
5.172631548920785
5.204304681275314
5.122303099560624

5.102472539314004
5.13486442761028
5.129154855664604
5.1461208293027285
5.146289380443744
5.0757816626116465
4.930827382292277
4.721869858041339
4.502402636615213
4.238439841274942
3.8990319206010104
3.438252929058797
2.854060530507241
2.2972577707675708
1.701483175928924
1.1330434995862353
0.5500622267900723
0.07173414915160903
-0.29043797485787093
-0.5096603926497952
-0.7829475659868338
-1.0557827419142134
-1.293237953380052
-1.4512192390021252
-1.612371543292268

A.5 Mathematica code
Function, calculation of common factors | and Y from PD and LGD

fstepM[vec_,spv_,r_,n_,sStd_,tol ,sE_,Id_,pts_]:=Module[{cn,cj,ndf,mu,
cc,cf,mun,rnv,sc,scg,scf,td,qd,in,is,inW,denS,br},



cn=Transpose[{Transpose[vec[[1]]][[1]]+RandomReal[NormalDistribution[]
,Length[vec][1]]]], Transpose[vec|[1]]][[2]]+1}];

cj=Sort[cn,#1[[1 N1<#2[[1]1& ];
ndf=Max[1,Round[Length[cj]spVv[[1]]]];
mu=cj[[ndf,1]];
td=Take[Transpose[cj][[2]],ndf];

gd=Table[Count][td,i]/Length[cj],{i,r};

in=0;

denS=Sum(pts[i]] qd[[il].{i,r}];

br=0;

While[1 - 1/denS Sum[h[in,If[i==1,0,Sum[vec[[2, - 1,210,
1M1,sE,  Id,i] qd[[i]].{i,r}]>spv][[2]]+tol ||1 - 1/denS
Sum[h[in,If[i==1,0,Sum[vec|[2, -1,2]14,1,i - 1}],sE,Id,i]
qd[[i]].{i,r}]<spVv[[2]] - tol, If[( - Sum[dh[in,If[i==1,0,Sum][vec]|[2,
120040, - 1}1] ,sE,Id,i] gd[[i]].{i,r}}/denS)==0,If[br==0,inW=

2;br=1;, Break[]],inW =in - (1 - 1/denS Sum[h[in,If[i==1,0,Sum[vec|[2,
121143, 1.0 - 1}11,sE.Id,i] qd[[i]] {i.r}] - spv[[2]D/(
Sum[dh[in,If[i==1,0,Sum[vec|[2, - ,2]1.45,1,i - 1}1],sE,Id,i]

qd[[i]].{i,r})/denS)];in=inW;];

cc={Drop[Transpose]cj][[1]],ndf] -
mu,Drop[Transpose|cj][[2]],ndf]} /[Transpose;

cf=Select[cc,#[[2]]<r&];

mun= mu;

rnv=Sort[RandomReal[NormalDistribution[mun,sStd],n ]];
sc=Select[rnv,#>0&];
scg=Transpose[{sc,Table[0,{Length[sc]}]}];

scf=Join[cf,scq];
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{scf,Append[vec[[2]],{mun,in}]}

I

h[ \ [lota]_,is_, \ [Sigma]E_,Idf_,ts_]:=Exp[ \ [lota]+is+ldf+ \ [Sigma]E"2/2
ts]CDF[NormalDistribution[0,1],( -Idf -\[lota] -is)/(Sqrt[ts] \ [Sigma]E) -
Sartfts]  \ [Sigma]E]+1 - CDF[NormalDistribution[0,1],( -ldf -\[lota] -
is)/(Sqrt[ts] \ [Sigma]E)]

dh[ \ [lota]_,is_, \ [Sigma]E_,Id f_ts ]:=E’( \ [lota]+is+ldf+ts

\ [Sigma]E"2/2) CDF[NormalDistribution[0,1],( -ldf -\[lota] -

is)/(Sqrt[ts] \ [Sigma]E) - Sart[ts] \ [Sigma]E]

sdens[n_,r_,sStd_,spv_,tol_,sE_,Id_,pts_]:=Module[{rnvs,scs,scgs,ndf},
rnvs=Sort[RandomReal[NormalDistribution[0,sStd],n ]];
ndf=Max[1,Round[n spV[[1]]]];

scs=Drop[rnvs,ndf] - rvs[[ndf]];

scgs=Transpose[{scs,Table[0,{Length[scs]}]}];

Nest[ fstepM[#,spv,r,n,sStd,tol,sE,|d,pts]&
{scgs,Table[{0,0},{r}]},2r]

]

fytM[n_,r_,sStd_,It ,gt ,sd_,sm_,tol_,sE_,Id_,pts_]:=Fold[
fstepM[#1,#2 ,r,n,sStd,tol,sE,ld,pts]& ,{sd,sm},{lt,gt}//Transpose]

Function, calculation of PD and LGD from common factors

fstepMinv[vec_,spvinv_,r_,n_,sStd_,tol ,sE_,Id_,pts_]:=Module[{cn,cj,c
c,cf,ndf,rnv,sc,scg,scf,td,qd,denS,Lt,Gt},

cn=Transpose[{Transpose[vec|[1] 1l[[1]]+RandomReal[NormalDistribution[s
pvinv[[1]],1],Length[vec[[1]]]], Transpose[vec[[1]]][[2]]+1}];

cj=Sort[cn #1[[1]]<#2[[1]]& ;
ndf=Count[Negative[Transpose[cn][[1]]], True];
Lt=ndf/Length[cj];

td=Take[Transpose[cj][[2]],ndf];
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gd=Table[Count[td,i]/Lengt h[cjl.{i,r}];

denS=Sum|[pts|[[i]] qd[[i]].{i,r}];

Gt=1- 1/denS Sum[h[spvinv[[2]],Sum[vec[[2, -, 21141, - 1}],sE,1d,i]
qd[[i].{i.r};

cc={Drop[Transpose]cj][[1]],ndf],Drop[Transposel[cj][[2]],ndf]}//Transp
ose;

cf=Select[cc,#[[2]]<r&];

rnv=SortfRandomReal[NormalDistribution[spvinv[[1]],sStd],n ]];
sc=Select[rnv,#>0&];
scg=Transpose[{sc,Table[0,{Length[sc]}]}];

scf=Join[cf,scg];

{scf,Append[vec[[2]].{spvInV[[1]],spvInV[[2]]}],Append[vec[[3]],{Lt,Gt

1

I;

h[ \ [lota]_,is_, \ [Sigma]E_,Idf__ ds_|:=Exp[ \[lota]+is+ldf+ \ [Sigma]E"2/2
ts]CDF[NormalDistribution[0,1],( -ldf -\[lota] -is)/(Sqrt[ts] \ [Sigma]E) -
Sqrt[ts]  \ [Sigma]E]+1 - CDF[NormalDistribution[0,1],( -ldf -\ lota]
is)/(Sqrt[ts] \ [Sigma]E)]

sdensinv[n_,r_,sStd_,spvinv_,tol ,sE_,Id_,pts_]J:=Module[{rn VS,SCS,SCQS
,ndf},

rnvs=Sort[RandomReal[NormalDistribution[spvInv[[1]],sStd],n ]];
ndf=Count[Negative[rnvs], True];
scs=Drop[rnvs,ndf] - rnvs[[ndf]];

scgs=Transpose[{scs, Table[0,{Length[scs]}]}];
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Nest[ fstepMinv[#,spvinv,r,n,sStd,tol,sE,Id,pts]& ,{scgs,Table [ -
rnvs[[ndf]],0},{r}]},2r]

]

fytMinv[LG_, \[CapitalDelta]Yt_, \ [CapitalDelta]lt_,sd_,sm_,n_,r_,sStd_,
tol_,sE_,Id_,pts_]:=Fold[ fstepMinv[#1,#2,r,n,sStd,tol,sE,Id,pts]&
{sd,sm{LG}}{ \ [CapitalDelta]Yt, \ [CapitalDelta]lt}//Transpose]

Data a parameters

data =Import["][[1]];
[t=Transpose[Drop[data,1]][[1]]/100;
gt=Transpose[Drop[data,1]][[4]];

tol=10" - 8;

ld=Log[1];

sE=0.12;

((1+urok)”r urok)/((1+urok)”r -1);
spv={0.005,0.004};

n=10000;

sStd=5;

r=120;

urok=0.01,;

Table[(urok - 1/(1+urok)”r+1/(1+urok)M)/(1 - 1/(1+urok)”) {i,r}];

pts=Prepend[Table[( - 1/(1+urok)r+1/(1+urok)Mi)/(1 - 1/(1+urok)™r){i,r -
13.1];

Results
Timing[fis=sdens[n,r,sStd,spv,tol,sE,Id,pts];]
sd=fis[[1]];

sm=fis[[2]];
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ListLinePlot[{sm[[All,1]],sm[[Al 1,2]]},PlotRange - >All]
Timing[vytS=fytM[n,r,sStd,It,gt,sd,sm,tol,sE,ld,pts];]

ListLinePlot[{Drop[vytS[[2,All,1]],3r],Drop[vytS[[2,All,2]],3r]},PlotR
ange - >All]

ListLinePlot[Drop[vytS[[2,All,2]],3r]]

ListLinePlot[{Accumulate[Drop[vytS[[2,All,1]],3r]],Accumul ate[Drop[vyt
S[[2,All,2]],3r1}]

ListLinePlot[{It,gt},PlotRange - >All]
sdinv=vytS[[1]];
sminv=Take[vytS[[2]], -1;

ListLinePlot[{Take[Transpose[smInv][[1]], -
10], Take[Transpose[smInv][[2]], - 107}

vytSinv=fytMinv[{It[[1]],gt[[1]]}, Take[Transpose[smInv][[1]], i
10], Take[Transpose[smInv][[2]], -
10],sdInv,sminv,n,r,sStd,tol,sE,ld,pts];

ListLinePlot[{vytSinv[[2,All,1]],vytSinv[[2,All,2]]},PlotRange - >All]

ListLinePlot[{Join[Take[lt,133],Drop[vytSinv[[3,All,1]],1]],Join[Take[
gt,133],Drop[vytSinv[[3,All,2]]],1]}]

A.6 The Johansen test of cointegrationdmand Gand corresponding cointegrating

vectors
Rank Eigenvalue Tracetest [p-value] Lmax test  [p-value]
0 0.093990 13.766 [0.0890] 12.733 [0.0852]
1 0.0079771 1.0332 [0.3094] 1.0332 [0.3094]

Beta(cointegrating vectors)
@ -1.1699 -0.25296

O -0.78858 -0.65458
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Renormalized beta coefficients

[ 1.0000 0.38645

O 0.67404 1.0000
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Report on Opponents’ comments

Rita D’Ecclesia:

The following changes wewplied according to the specific comments:

Essayl:
1 The table with descriptive statistics of the used dataset was added and the surrounding

text adjusted accordingly

1 The relationship between the S&P stock index and the Y common factor was estimated
by anautoregressive model and results briefly commented in the thid relationship
was used only to show that there might be some dependence of the common factor on
macroeconomic environment; this dependency is then examined more accurately in the

Essay 3

Essay2:

1 All equations in the paper were numbered
1 A short explanation was added to the page 8, where Rt is defined (the difference to RD)

1 Equation 3.4 is taken from Vasicek, where the default probability is an-npassumes
that it is constant at a\@n time, but dependent on the two risk factors in its evolution; as
this part of the essay serves only as a description of existing framework, the dissertation

wasn't changed at this place.
1 Nonrandom LGD at page 5 corrected to random LGD

1 The repetition tithe bottom of the page 5 serves as an explanation that Frye and Pykhtin

started from the same point, thus the equation was kept.
T Equation 3.9 (= 3.7 in the opponent’s repo

1 Footnote on the page 8 added to explaat the assumption of loans lasting only one

period is very restrictive and thus is a focus of our future research.
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The error in the notation of Rt was fixed in the section 3.4

The relationship between Y and S&P 500 was estimated by the autoregressivamdodel
a short note on the results was added; we are aware that this simple model of the
correlation is far from being perfect, however, we use this simplification because

modeling the correlation is not the main focus of this essay

Descriptive statistics vgaadded for the time series Rt and Dt; also, a short notice on the

stationarity test of the factors Y and | was shortly commented

In the first version of the essay, we calculated the Johansen test additionally to the Engle
Granger, because Engl&ranger, dspite confirming nonstationarity of both tested series,
did not reject the nonstationarity of residuals from the cointegrating regression; however,
we decided to run the VECM and our results show that there is a dependence structure

between Y and I; a disission was added to the section 3.4, Johansen test removed
Discussion of stationarity tests of residuals added

A note on the difference of Y on I and | on Y dependence added

A note explaining how the simulation was done in practice added; the referasnéeed

We consider our model dynamic because for LGD and PD we are able to estimate the
dynamic relationship between underlying risk factors and macroeconomic environment

and to predict dynamic LGD and PD

Essay3:

A note added to the section 4.2.5, exping that values of all parameters except of

P ( ( X V¥ iYwere)xhosen based on empirical observations or expert judgment

The explanation of parameters choice in the section 4.3.2. was improved

Figure 4.1 switched to double range

Better explanation of thadjustment of | and Q at figures 4.2 and 4.3 added
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1 A short note that stationarity of both endogenous VECM variables was rejected added (at
the beginning of the section 4.3.3)

1 Results of the Johansen test for cointegration and the cointegrating vedeuid@the
appendix; no additional normalizations (except the one provided in the appendix, which

was done automatically by the Gretl software) were used for Y and |
1 Scales present at Figures 4.5 and 4.6, legend added to describe better the visualizations
1 ov a n daresstandard errors of the cointegration regression (newly mentioned in the text)

T As the evolution of borrower’s assets, and
risk factors in the IRB framework are assumed to be normally distrikthiegearly
increment of the underlying risk factors will be distributed normally with a quadruple

variance

Tomas Tichy:

1 The introduction of the first paper was updated and a paragraph, which describes the

evolution of the banking regulation since the grapas published, was added.
1 The references in the third paper were extended.

1 References to Frye and Pykhtin added to the introduetiba text referred to their work,

but the correct reference was missing.
1 References of Eberlein (2001, 2002) we fixed.
1 Systemic replaced by systematic.

1 Misspellings and other suggestions fixed and accepted.

Jiri Witzany:
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The following changes were applied according to the specific comments:

Essayl:
1 A sentence explaining thai are identically distributed only in trease when the loans

last only one period added. As discussed in the essay, this is the biggest shortcoming of
the first and the second essays, which we dealt with in the last essay.

1 A note that we consider all loans as lasting only one period addedgolxbbapter
2.4.2. This allows all loans to enter and exit the calculation each period

Essay2:

1 A discussion why we used the rate of foreclosures started on the defaulted accounts was
added to the data description. Unfortunately, for the overall US ngertgarket, there

does not exist (to our knowledge) a better publicly available dataset of LGD

Essay 3:
1 The results were recalculated using 95th quantile of L instead the 99.9th
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