Autor: |
prof. PhDr. Ladislav Krištoufek Ph.D.,
|
Typ: |
Články v impaktovaných časopisech |
Rok: |
2012 |
Číslo: |
0 |
ISSN / ISBN: |
|
Publikováno v: |
Physica A: Statistical Mechanics and its Applications 391, pp. 4252-4260 arXiv PDF |
Místo vydání: |
|
Klíčová slova: |
Rescaled range analysis, Modified rescaled range analysis Hurst exponent, Long-term memory, Short-term memory |
JEL kódy: |
|
Citace: |
|
Granty: |
GAUK 5183/2010 (118310) Fraktalita a multifraktalita finančních trhů: metody a aplikace
Výzkumný záměr IES (2005-2011) Integrace české ekonomiky do Evropské unie a její rozvoj
|
Abstrakt: |
In this paper, we present the results of Monte Carlo simulations for two popular techniques of long-range correlation detection - classical and modified rescaled range analyses. A focus is put on an effect of different distributional properties on an ability of the methods to efficiently distinguish between short-term memory and long-term memory. To do so, we analyze the behavior of the estimators for independent, short-range dependent, and long- range dependent processes with innovations from eight different distributions. We find that apart from a combination of very high levels of kurtosis and skewness, both estimators are quite robust to distributional properties. Importantly, we show that R/S is biased upwards (yet not strongly) for short-range dependent processes, while M-R/S is strongly biased downwards for long-range dependent processes regardless of the distribution of innovations. |