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Abstract: 
The Efficient Markets Hypothesis provides a theoretical basis on which technical trading rules are 

rejected as a viable trading strategy. Technical trading rules, providing a signal of when to buy or sell asset 
based on such price patterns to the user, should not be useful for generating excess returns. 

Technical traders and chartists tend to put little faith in strict efficient markets. Fundamentalists rely on 
their model employing fundamental information basis to forecasting of the next price period. The traders 
determine whether current conditions call for the acquisition of fundamental information in a forward looking 
manners, rather than relying on post performance. This approach relies on heterogeneity in the agent 
information and subsequent decisions either as fundamentalists or as chartists. Changing of the chartist’s 
profitability and fundamentalist’s positions is the basis of cycles behaviour. A more detail analysis is introduced 
in the Brock and Hommes model. We analyze this model in a memory case. This branch consists of a behaviour 
analysis among fundamentalists, technical traders, chartists, and contrarians. It is possible to show that in the 
case without contrarians but with a length memory adding, and increasing of the intensity choice parameter, 
fundamentalist’s strategy is preferable. 

Next, the case with fundamentalists and contrarians including different values of coefficients is 
observed. This case is sensitive on the structure of memory weights and the memory lengths. It is shown that 
different values of these memory coefficients can significantly change the preferences of trader strategies. 
The last case, where fundamentalists, trend chasers, and contrarians are presented, shows high profitability of 
contrarians strategy at the prescribed memory lengths. The implementation of memory in the system with 
heterogeneous agents model is, in all these simulations, very important. In this case, these results have had very 
different values in comparison with the case without memory. 
 
Keywords:  

efficient markets hypothesis, technical trading rules, fundamentalists, technical traders, chartists, and 
contrarians, heterogeneous agent model with memory, asset price behaviour  
 
JEL classifications: C610; G140; D840 

1 Introduction 
Assumptions about rational behaviour of agents, homogeneous models, and efficient 

market hypothesis were paradigm of economic and finance theory for the last year. After 
empirical data analysis on financial markets and economic and finance progress these 
paradigm are gotten over. There are phenomena observed in real data collected from financial 
markets that cannot be explained by the recent economic and finance theories. One paradigm 
of recent economic and finance theory asserts that sources of risk and economic fluctuations 
are exogenous. Therefore the economic system would converge to a steady-state path, which 
is determined by fundamentals and there are no opportunities for speculative profits in the 
absence of external shocks prices. It means that the other factors play important role in 
construction of real market forces as heterogeneous expectations. Since agents no have 
sufficient knowledge of the structure of the economy to form correct mathematical 
expectations, it is impossible for any formal theory to postulate unique expectations that 
would be held by all agents (Gaunersdorfer (2000)). Prices are partly determined by 
fundamentals and partly by the observed fluctuations endogenously caused by non-linear 
market forces. This implies that technical trading rules need not be systematically bad and 
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may help in predicting future price changes. Developments in the theory of non-linear 
dynamic systems have contributed to new approaches in economics and finance (Brock 
(2001)). Introducing non-linearity in the models may improve research of a mechanism 
generating the observed movements in the real financial data. Financial markets are 
considered as systems of the interacting agents processing new information immediately. A 
heterogeneity in expectations can lead to market instability and complicated dynamics. 

Our approach assumes that agents are intelligent having no full knowledge about the 
underlying model in sense of the rational expectation theory and no having the computational 
equipment can interpret the same information by different way. Therefore prices are driven by 
endogenously market forces. The approach Adaptive Belief Approach by Brock and Hommes 
(1997) is employed in this paper. Agents adapt their predictions by choosing among a finite 
number of predictors. Each predictor has a performance measure. Based on this performance 
agents make a rational choice between the predictors. Brock and Hommes shown that the 
adaptive rational equilibrium dynamics incorporates a general mechanism which may 
generate local instability of the equilibrium steady state and complicated global equilibrium 
dynamics.  

We focus on a version of the model with two types of trades, i.e., fundamentalists, and 
technical traders. Technical traders tend to put little faith in strict efficient markets.  
Fundamentalists rely on their model employing fundamental information basis to forecasting 
of the next price period. The traders determine whether current conditions call for the 
acquisition of fundamental information in a forward looking manners, rather than relying on 
post performance. This approach relies on heterogeneity in the agent information and 
subsequent decisions either as fundamentalists or as chartists. Changing of the chartist’s 
profitability and fundamentalist’s positions is a basis of the cycles behaviour. A more detailed 
analysis is introduced in the Brock and Hommes model. We analyse this model in a memory 
case.  

This paper is organized as follows. In Section 2 we briefly introduce the Brock-Hommes 
model without memory. This branch consists of a behaviour analysis among fundamentalists, 
technical traders, chartists, and contrarians. It is possible to show that in the case without 
contrarians but with a length memory adding, and increasing of the intensity choice 
parameter, fundamentalist’s strategy is preferable. 

In Section 3 this model is studied with memory in the performance measure. This case 
with fundamentalists and contrarians including different values of coefficients is observed. 
This case is sensitive on the structure of memory weights and the memory lengths. It is shown 
that different values of these memory coefficients can significantly change the preferences of 
trader strategies.  

 In Section 4, 

                                                

fundamentalists, trend chasers, and contrarians are presented again. This 
case shows high profitability of contrarians strategy at the prescribed memory lengths. The 
implementation of memory in the system with heterogeneous agents model is, in all these 
simulations, very important.  In this case, these results have had very different values in 
comparison with the case without memory. Results of numerical analysis are introduced.  

2 Model 
The analysed model presents a form of evolutionary dynamics, which is called 

Adaptive Belief System, in a simple present discounted value (PDV) pricing model. 
Such model without memory (and only one period) was presented by Brock and 
Hommes (1998)1.  

Let us consider an asset-pricing model with one risky asset and one risk-free 
asset. Let pt be the share price (ex dividend) of the risky asset at time t, and let {yt} be 
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i.i.d. the stochastic dividend process of the risky asset. The risk free asset is perfectly 
elastically supplied at gross return R > 1. The dynamics of wealth can be written as 

( )1 1 1t t t t tW R W p y R p+ + += ⋅ + + − ⋅ ⋅ tz , (2.1) 

where zt denotes the number of shares of the asset purchased at time t. Et and Vt are the 
conditional expectation and conditional variance operators, based on the public available 
information set consisting of past prices and dividends, i.e., on the information set ℱt = 
{pt, pt-1,…;yt, yt-1 ,…}. Let Eh,t, Vh,t 

)

denote beliefs of investor of type h about the 
conditional expectation and conditional variance. The conditional variance of wealth is 

( ) (2
, 1 , 1 1h t t t h t t t tV W z V p y R p+ + += ⋅ + − ⋅ . (2.2) 

We assume that beliefs about the conditional variance of excess returns are constant for 
all investor types h  

( ) 2 2
, 1 1h t t t t hV p y R p σ σ+ ++ − ⋅ ≡ = . (2.3) 

Assume each investor type is a myopic mean variance maximizer. So for type h, the 
demand for shares zht is solved as follows 

( ), 1 , 12max h t t h t t
z

aE W V W+ +
 − 
 

,  
(2.4) 

i.e., 
( ) 2

, 1 1 , 0h t t t t s tE p y Rp a zσ+ ++ − − = , (2.5) 

( ), 1 1
, 2

h t t t t
h t

E p y R p
z

a σ
+ ++ − ⋅

=
⋅

. 
 

(2.6) 
The risk aversion a is here assumed to be the same for all traders. Let zs,t be a supply of 
shares per investor and nh,t the fractions of investors of type h at date t. The equilibrium 
among demand and supply is expressed in the following form 

( ){ }2
, , 1 1 /h t h t t t t s t

h
n E p y R p a zσ+ ++ − ⋅ ⋅ =∑ ,

,s t

. (2.7) 

If there is only one type h, the market equilibrium yields the pricing equation 
( ) 2

, 1 1t h t t tR p E p y a zσ+ +⋅ = + − ⋅ ⋅ . (2.8) 

For the special case of zero supply, i.e., zst = 0, for all t, a benchmark notion of 
the rational expectation fundamental solution pt

* is obtained. Then the expression (2.8) 
can be written in the following form 

{ }* *
1 1t t t tR p E p y+ +⋅ = + . (2.9) 

If the dividend process {yt} is i.i.d., the expectation Et{yt+1} = y , and a standard notion 
of fundamental is obtained. Let us put pt

* = p , where p  is solution of  
R p p y⋅ = + . (2.10) 

The equation (2.9) has infinitely many solutions but only the constant solution 
( 1/ −= Ryp

( )lim / t
tt

E p R
→∞

) of the equation (2.10) satisfies no the bubbles condition, i.e. 
. For our purpose, it is better to work with the deviation x0= t from the 

benchmark fundamental pt
*, i.e., 

*
ttt ppx −= . (2.11) 

Heterogeneous beliefs will be now introduced and we shall study their 
influences on equilibrium of the dynamical systems. In the case of zero supply of 
outside shares we get from the equation (2.7) 

( ), , 1 1t h t h t t t
h

R p n E p y+ +⋅ = ⋅ +∑ . (2.12) 

The class of beliefs for every trader type h must be specified. Therefore the following 
assumption is introduced: 
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All beliefs are of the form 
( ) ( ) ( )*

, 1 1 1 1 1,...,h t t t t t t h t t LE p y E p y f x x+ + + + − −+ = + + . (2.13) 

where denotes the fundamental,  is the conditional expectation of the 

fundamental on the information set ℱ

*
1+tp ( *

, 1 1h t t tE p y+ ++

t px =

)
t,  is the deviation from the 

fundamental, and f

*
tt p−

h is some deterministic function which can differ across trader types 
h, i.e. we restrict beliefs to deterministic functions of past deviations from the 
fundamental. As a special case, the assumption includes the case of an i.i.d. dividend 
process, with Etyt+1 = y  and the corresponding constant fundamental ( )1/* −== Ryppt . 
We can rewrite equation (2.12) in the deviations form 

*
t t tR p R x R p⋅ = ⋅ + ⋅ . (2.14) 

i.e., 
( ) ( )*

, , 1 1 1 1t h t h t t t t t t
h

R x n E p y E p y+ + + +⋅ = ⋅ + − +∑ . (2.15) 

Now we use equation (2.13), and the fact that  for all t, , 1h tn =∑ and we obtain  

( ) ( ) ( ) ( )
* *

, 1 1 1 1 1
!, ...,

!t h t t t t h t t L t t t
h

nR x n E p y f x x E p y
r n r+ + − − + +

 ⋅ = ⋅ + + − +  −∑ !

,t

. 
 

(2.16) 

( ), 1 ,,...,t h t h t t L h t h
h h

R x n f x x n f− −⋅ = ⋅ ≡ ⋅∑ ∑ . 

t

 
(2.17) 

Denote the excess returns by expression 1 1 1t t tR p y R+ + += + − ⋅ p )1. Let  be 
the conditional expectation of 

(, ,h t h t tE Rρ +=

1tR + . Let us consider the goal function 

( )2 2
, 1 , 1 ,max max

2 2h t t h t t h tz z

a aE R z z V R z z 2ρ σ+ +
     ⋅ − ⋅ ⋅ = ⋅ − ⋅ ⋅     

     

 
(2.18) 





. 

The equation (2.18) is equivalent to the equation (2.4) up to a constant, so the optimum 
choice of shares of the risky asset is the same. So the optimum solution of the equation 
(2.18) is denoted by ( ),h tz ρ . 

3 The Dynamics of Fractions  
Let us concentrate on the adoption of beliefs, i.e., on dynamics of the fractions 

nh,t o

t

f different trader types. Next, let us change slightly the timing of updating beliefs, 
i.e., 

( ), 1 1 , 1 ,,...,t h t h t t L h t h
h h

R x n f x x n− − − −⋅ = ⋅ ≡ ⋅∑ ∑ (3.1) f , 

tp

t

where nh,t-1 denotes the fraction of trader type h at the beginning of period t, before than 
the equilibrium price xt has been observed. Now the realized excess return over period 
t to the period t+1 is computed, 

1 1 1t t tR p y R+ + += + − ⋅ . (3.2) 
* *

1 1 1 1t t t t tR x p y R x R p+ + + += + + − ⋅ − ⋅ . (3.3) 

( ) ( )* * *
1 1 1 1 1 1 1 1t t t t t t t t t t t

*
tR x R x p y E p y E p y R p+ + + + + + + += − ⋅ + + − + + + − ⋅ . (3.4) 

From the equation (2.9) we get 
( )* *

1 1 0t t t tE p y R p+ ++ − ⋅ = , and ( )* *
1 1 1 1t t t t t t 1p y E p yδ + + + + += + − + , 

which is a martingale difference sequence with respect to ℱt i.e., ( )1 0t t tE δ + =F  for all t. 
So the expression (3.4) can be written as follows 

1 1t t tR x R x δ+ += − ⋅ + 1t+ . (3.5) 
 4



The decomposition of the equation (3.5) as separating the ‘explanation’ of 
realized excess returns Rt+1 into the contribution xt+1 – tR x⋅

1+t

 of the theory is investigated 
here and the conventional Efficient Markets Theory term δ  is shown. 

 Let the fitness measure (or the performance measure) ( 1 ,,t h tRπ )ρ+  be defined by 

( ) ( ) ( ) ( ), 1 , 1 , 1 1,h t t h t t h t t t t h tR R z x R x zπ π ,ρ ρ δ ρ+ + + += = ⋅ = − ⋅ + ⋅ , (3.6) 
so the fitness is given by the realized profits for trader h. In the following paragraphs, 
numerical simulations with a stochastic dividend process tt yy ε+= , where tε  is i.i.d.2, 
with a uniform distribution on an interval ,ε ε− +  will be used. 

 Now write type h beliefs  in the deviations form. Let 
the updated fractions n

( ), , 1 ,h t h t t h t tE R f R xρ += = − ⋅

h,t be given 

1 t

by the discrete choice probability  
( ), ,exp /h t h t tn Zβ π −= ⋅ , where ( ), 1expt h

h
Z β π −= ⋅∑ . (3.7) 

The parameter β is the intensity of choice measuring how fast agents switch between 
different prediction strategies. The parameter β is a measure of trader’s rationality. The 
variable Zt is just a normalization so that fractions nh,t s

)
um up to 1. If the intensity of 

choice is infinite ( +∞=β , the entire mass of traders uses the strategy that has the 
highest fitness. If the intensity of choice is zero, the mass of traders distributes itself 
evenly across the set of available strategies. 

The timing of predictor selection is important. The fractions nh,t depend upon fitness 
π and return R at the time t – 1 in order to ensure that depends only upon observable 
deviations xt at time t. The timing ensures that past realized profits are observable 
quantities that can be used in predictor selection. 

4 Memory in the performance measure 
For the case with memory in the performance measure the fitness is not given by 

the most recent past (last period), but by summation of more values of fitness measure in 
the past with different weights for these values. The weights sum up to one. 

, , ,
1

exp /
m

h t h t h t p t
p

n Zβ η π −
=

 
= ⋅ ⋅ 

 
∑ , t h t p , ,

1

exp
m

t h
h p

Z β η π −
=

 
= ⋅ ⋅

 
∑ ∑ . 

 
(4.1) 

where m denotes the memory length, η is the vector of memory weights. 
All beliefs will be of the simple form 

, 1h t t hf g x b−= ⋅ +  (4.2) 
where gh denotes the trend and bh the bias of trader type h. 

If bh = 0, the agent h is called a pure trend chaser if g > 0 (strong trend chaser 
if ) and a contrarian if g < 0 (strong contrarian if g < -R). Rg >

If gh = 0, type h trader is said to be purely biased. He is upward (downward) 
biased if .  0>hb ( )0<hb

In the special case , type h trader is called fundamentalist i.e., the 
trader is believing that prices return to their fundamental value. Fundamentalists do have 
all past prices and dividends in their information set, but they do not know the fractions 
n

0== hh bg

h,t of the other belief types. 

                                                

Now we derive the fitness measure for the simple belief type (2.2). Rewriting the 
equation (2.6) in deviations form yields the demand for shares by type h (by the 
assumption (2.13)) 
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2 In this case we have δt+1 = εt+1 



 
( ), 1 1 , 1 1

, 1 2 2
h t t t t h t t

h t

E p y R x f R x
z

a aσ σ
− − −

−

+ − ⋅ − ⋅
= =

⋅ ⋅
−

)

. 
 

(4.3) 
Now the fitness function (3.6) can be rewritten, hence the realized profit is 

( )(1 1 2 1
, 1 , 1 2

t t t h t h t
j t t h t

x R x g x b R x
R z

a
δ

π
σ

− + − −
− −

− ⋅ + ⋅ + − ⋅
= ⋅ =

⋅
. 

 
(4.4) 

The most common trader type in our numerical analysis is fundamentalist with 
parameters . Hence for fundamentalists we can write 0== hh bg

( )( )1 1
, 1 2

t t t t
j t

1x R x R x
a

δ
π

σ
− + −

−

− ⋅ + − ⋅
=

⋅
. 

 
(4.5) 

5 Numerical Analysis of the model under different memory 
structures 

This section demonstrates numerically the importance of the memory for a 
behaviour of this model. We show that there are significant differences in profitability 
of trader’s strategies as memory length is changed. In the second and third case we also 
use different memory structures (memory weights), which also influence the traders 
profitability, i.e., the trader’s participation on the market. 

Numerical analysis is focused only on the model with four types of traders, each 
with different beliefs. We examine three different cases, where types one are 
fundamentalists that interact with other trader’s types such as trend chasers, contrarians, 
or with both of them.  

For all three cases in this section we add noise to a dividend process. The noise has 
a uniform distribution on the interval 0.005, 0.005− + . The equation (5.1) is used for the 
memoryless system (one period), and the equation (5.2) for the system with memory 
where m denotes the memory length. Memory weights η j,p have the same value for 
different memory positions in case 1, but in case 2 and 3 they are given experiments 
with different values for these positions. The sum of η j,p‘s must add up to one. 

Memoryless system 

( )
4

, 1
1

1 expt j
j

x
R

β π −
=

= ⋅∑ t . 
 

(5.1) 

System with memory, where m denotes memory length and η memory weights. 
4

, ,
1 1

1 exp
m

t j
j p

x
R

β η π −
= =

 
= ⋅ ⋅ 

 
∑ ∑

 
(5.2) p j t p . 

Case 1: Fundamentalists, Trend chasers 
First simulation is without memory, i.e. agents make decisions according to the 

last period of performance measure. For values of beta larger than 90 there arise chaotic 
price fluctuations and trading strategy labelled N2 becomes dominant on the market, 
figure (5.1). In this paper we do not want to explore dynamic features in the sense of 
chaotic behaviour but mainly the presence of traders on the market. 

Type Parameters  

N1 1 0 g =
1 0b =  

 
Fundamentalists 

N2 2 1.1g = 2 0.2b =   Trend with upward bias 

N3 3 0.9g = 3 0.2b = −   Trend with downward bias 

N4 4 1g = 4 0b =   Trend chasers 
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Table 5.1 Parameters of the system for case 1. 



The effect of different memory lengths (for all types) is displayed in figures (5.3), (5.4). 
There is a dramatic change at m = 2 where fundamentalists becomes dominant strategy 
to m = 18 where no price fluctuations occur and strategies are equally represented on the 
market. This example shows stabilizing effect of memory for the system. 
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Figure 5.1 Participation of trading strategies on the market 
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Figure 5.2 Time series of xt with different values of β: 50, 80, 100, 140 

1000 1050 1100 1150 1200

0

2
beta = 150

x 1〈 〉( )
t

t

1000 1050 1100 1150 1200

0

2

x 2〈 〉( )
t

t

1000 1050 1100 1150 1200

0

2

x 3〈 〉( )
t

t

1000 1050 1100 1150 1200

0

2

x 15〈 〉( )
t

t

Figure 5.3 Time series of xt with different memory lengths m: 1, 2, 3, and 15. 
Figure (5.5) displays simulations with equal memory length (m=20), but with different 

values of beta. It confirms the result – higher profitability of fundamentalists N1 on the 
market also with rising beta values. 
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Figure 5.4 Participation of trading strategies on the market 

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

N1
N2
N3
N4

TRADING STRATEGIES, m = 20

beta

m
ar

ke
t p

ar
tic

io
at

io
n 

(%
)

 

Figure 5. 5 Participation of trading strategies on the market 

Case 2: Fundamentalists, Contrarians 
Next, we consider an example with four different belief types with parameters: 

Type Parameters  

N1 1 0g = 1 0b =  
 

Fundamentalists 

N2 2 1.1g = − 2 0.2b =   Trend with upward bias 

N3 3 0.3g = − 3 0.2b = −   Trend with downward bias 

N4 4 0.5g = − 4 0b =   Contrarians 
Table 5.2 Parameters of the system for case 2. 

Without memory the system has complicated dynamics with maximum values of x 
within the interval 0.5, 0.7− + . The role of fundamentalists (N1) and contrarians without 
bias is with rising β is negligible (figure 5.6). With longer memory (20 periods, constant 
memory structure) the system is more stable, the price is less volatile and the amplitude 
is smaller (figure 5.9). 

With higher β (>4300) the strategy of fundamentalists (labelled N1) becomes the 
most profitable strategy on the market. From the beginning contrarians without bias 
(labelled N4) lose their positions and almost diminish from the market. With such 
memory structure is visible the importance of bias for contrarians (N3 versus N4). 
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Figure 5.6 Participation of trading strategies on the market. 
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Figure 5.7 Memory length and structure for trading strategies. 
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Figure 5.8 Time series of xt with different values of β: 500, 2000, and 6000. 
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Figure 5.9 Participation of trading strategies on the market 
Further analysis has shown system sensitivity on the memory length and structure 
(memory weights ). 

The following 
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example has the same coefficients for trading strategies but with 
shorter memory length for pure contrarians (N4), figure (5.10). In this example is 
evident the increase of profitability of the strategy number four and also for β > 2300 it 
becomes the most profitable one, figure (5.12). 
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Figure 5.10 Memory length and structure for trading strategies. 
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Figure 5.11 Time series of xt with different values of β: 500, 2000, and 6000. 
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Figure 5.12 Participation of trading strategies on the market 

Case 3: Fundamentalists, Trend chasers and Contrarians 
For the last case consider system with parameters: 

Type Parameters  

N1 1 0g = 1 0b =  
 

Fundamentalists 

N2 2 1.0g = 2 0.2b =   Trend with upward bias 

N3 3 0.6g = 3 0.2b = −   Trend with downward bias 

N4 4 0.5g = − 4 0b =   Contrarians 
Table 5.3 Parameters of the system for case 3. 

For memoryless model the leading strategy on the market are trend chasers with 
downward bias (N3), figure (5.13). With memory (m=20, constant memory structure) 
contrarians (N4) are becoming the leading strategy on the market. (N1) and (N3) are almost 
exiting the market, figure (5.15). In this case there also exists significant sensitivity on 
memory length and structure. Changing the memory structure for fundamentalists N1, figure 
(5.16) they are becoming significant part of the market, figure (5.17). When using the 
memory reduction for N3 (the least profitable strategy), figure (5.18) then we get similar 
 10



result as in preceding case with fundamentalists but the dominance of contrarians N4 is 
still high, figure (5.19). 
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Figure 5.13 Participation of trading strategies on the market 
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Figure 5.14 Memory length and structure for trading strategies. 
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Figure 5.15 Participation of trading strategies on the market 
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Figure 5.16 Memory length and structure for trading strategies. 
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 Figure 5.17 Participation of trading strategies on the market 
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 Figure 5.18 Memory length and structure for trading strategies. 
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 Figure 5.19 Participation of trading strategies on the market 
Alternative way how to study this system is changing the memory length with fixed b, 

figure (5.20). For shorter memory lengths (m < 10) interesting dynamics of traders strategies 
participation arises and price volatility is higher in that region. For memory lengths higher 
than 10 contrarians N4 starting to dominate the market.  
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Figure 5.20 Participation of trading strategies on the market 
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Figure 5.21 Time series of xt with different memory lengths m: 6, 10, 20, and 35. 
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6 Conclusions 
 

• The system with memory is more stable than the memoryless system. Higher values of 
β are needed to generate chaotic behaviour. 

• In all cases, memory adding helps fundamentalists to increase profit, i.e., to increase a 
participation on the market. Especially in the first case and the second case they even 
become the most profitable strategy as β increases. As was demonstrated in numerical 
analysis (the first case and the second case) fundamentalists become the most 
profitable one as β increases. That is a remarkable difference with comparison to the 
memoryless system. 

• A fact of shorter memory length for pure contrarians changes a profitability of this 
strategy significantly. From the marginal participation, this strategy is becoming 
leading strategy as β increases. 

• It is shown that increased memory helps contrarians outperform other strategies on the 
market. 
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