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Abstract:
We examine the predictability of expected stock returns across horizons using
machine learning. We use neural networks, and gradient boosted regression trees on
the U.S. and international equity datasets. We find that predictability of returns
using neural networks models decreases with longer forecasting horizon. We also
document the profitability of long-short portfolios, which were created using
predictions of cumulative returns at various horizons, before and after accounting
for transaction costs. There is a trade-off between higher transaction costs connected
to frequent rebalancing and greater returns on shorter horizons. However, we show
that increasing the forecasting horizon while matching the rebalancing period
increases risk-adjusted returns after transaction cost for the U.S. We combine
predictions of expected returns at multiple horizons using double-sorting and
buy/hold spread, a turnover reducing strategy. Using double sorts significantly
increases profitability on the U.S. sample. Buy/hold spread portfolios have better
risk-adjusted profitability in the U.S.
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1 Introduction

The central question of asset pricing is why do different assets have different expected
returns. There are various explanations, but the most conceptual is the risk-based ex-
planation. Investors get a different amount of compensation for bearing different amount
of risk. Expected returns predictions, or compensation for the undertaken risk, should
take into account all available information, but it is not clear what information is truly
relevant and what functional form should resulting predictability take. Over the last forty
years, the risk-based explanation failed to find convincing empirical support as hundreds of
anomalies, or patterns in stock returns not identified by the prevailing asset pricing mod-
els, were identified. Hundreds of predictors identified in the academic literature alone,
however, does not make it a big data problem in a classical sense. Successful applications
of machine learning in other fields like natural language processing, image recognition or
gaming are based on two aspects which simply do not hold in finance — an abundance
of data and high ”signal-to-noise” ratios. When forecasting returns, we do not have an
abundance of data at our disposal. It is true that we have plenty of potentially predictive
variables; however, we are significantly constrained by the number of observations we can
learn from. We do not have many observations of the dependent variable or label. It
is the number of observations that limits how complex models we can train. To make
things even worse, we are also in the case of a low signal-to-noise ratio, which captures
the level of predictability in the domain of interest. Its low levels in financial markets
is a direct consequence of investors incentives. Any time there would be an arbitrage,
investors should exploit it immediately and in a process erase any level of predictability
not associated with the risk compensation.

So how does a successful application of machine learning in finance look like? Gu
et al. (2020) show that combining anomalies via machine learning-based predictive regres-
sion into one signal achieves unprecedented out-of-sample expected returns predictability!.
This superior predictability is not a consequence of adding more predictive variables than
previous literature but of allowing nonlinear interaction of predictive variables and incor-
porating regularization. Similar approaches are also employed by Giglio and Xiu (2019),
Kelly et al. (2019), Kozak et al. (2020), Chen et al. (2020), Bryzgalova et al. (2020) and
Freyberger et al. (2017)2.

However, most of the empirical results in the asset pricing literature, including the re-
cent work using machine learning, are based on one-month forecasting horizon®. Investors

1. This predictability is typically based on the individual firm characteristics, and it is common to use
terms anomaly and firm characteristic interchangeably. Examples of firm characteristics used as stock-
return predictors are momentum (Jegadeesh and Titman, 1993), accruals (Sloan, 1996), size and book-
to-market ratio (Fama and French, 1992). For the comprehensive list of anomalies documented in the
literature, please see the large replication study of Hou et al. (2020).

2. Applications of machine learning in finance was successful also in other areas than asset pricing.
Khandani et al. (2010) apply machine learning to construct models of consumer credit risk that improve
classification rates of credit card delinquencies and defaults. Butaru et al. (2016) model consumer credit
risk finding differences between drivers of delinquency across different banks. Sirignano et al. (2018) develop
a deep learning model of mortgage risk using a large number of loan-specific as well as macroeconomic
variables finding strongly nonlinear relationships. Heaton et al. (2017) apply deep learning hierarchical
decision models to portfolio selection.

3. Studies, employing machine learning on the cross-section to predict expected returns, which do not
consider longer horizons than one-month include: Bryzgalova et al. (2020), Tobek and Hronec (2020), Chen
et al. (2020), Feng et al. (2020) Kozak et al. (2020), or Messmer (2017).



are not horizon agnostic, though. Only an investor with a logarithmic utility function
would allocate his portfolio the same way for the single and multiple horizons. Since stock
returns are not independent and identically distributed, an investor could use time and
cross-sectional variation in expected stock returns to his advantage.

We examine the predictability of expected stock returns across multiple horizons us-
ing machine learning. There are three main contributions. Firstly, we document that
predictability of returns decreases with longer forecasting horizon. Secondly, we look at
the long-short portfolios’ profitability based on the predictive regressions across horizons
after accounting for transaction costs. There is a trade-off between greater profitability on
shorter horizons and higher transaction costs resulting from more frequent rebalancing.
Without transaction costs, the risk-adjusted profitability is approximately the same for
all horizons in the U.S., and declines internationally. After accounting for transactions
costs, the risk-adjusted profitability increases with longer horizons in the U.S. It remains
roughly the same for all horizons internationally. Thirdly, we combine predictions for
multiple horizons and find that correctly combining them using double sorts significantly
improves profitability on the U.S. universe.

We examine expected multi-horizon stock returns around the globe. Using 153 anoma-
lies from Tobek and Hronec (2020) as variables in predictive regressions for stock returns,
we inspect the predictability of stock returns from one month to two years ahead and
find decreasing predictability with longer horizons. This result matches the conclusion of
Lewellen (2015), who uses a smaller number of variables and the least-squares approach
on one month, six months and one-year horizons. On the other hand, it differs from the
conclusion of Gu et al. (2020) who, though being closer to this study in methodology,
document increasing predictability on a longer horizon (one-year) compared to a shorter
horizon (one-month). This could be a result of different anomalies being used or difference
in the investment universe, where our universe is significantly more liquid. The role of
horizons is also studied by Kamara et al. (2015) who focus on the pricing of risk factors
on different forecasting horizons. Their results suggest that risk at longer horizons is more
relevant for persistent factors. Avramov et al. (2020) use a machine learning-based ap-
proach to create a fundamental based measure which is measuring the distance between
fundamentals and prior moving averages. They show that their measure is significant not
only on the one-month horizon but also on longer horizons (with profitability decreasing
at longer horizons).

Next, we construct the long-short portfolios using cumulative returns predictions at
different horizons. Gu et al. (2020) and Tobek and Hronec (2020) focus on the monthly
horizon only and document strong predictability in the cross-section of returns by using
a number of machine learning methods. We replicate their results on the liquid uni-
verse of global stocks and use them as our benchmark. Avramov et al. (2021) show, that
profitability of machine learning-based strategies using stock characteristics as predictors,
significantly weakens after considering transaction costs. Other papers examining trans-
action costs when combining multiple anomalies are for example Frazzini et al. (2012) and
DeMiguel et al. (2020)%.

One of the remedies of high transaction costs is rebalancing less often, and adjusting
the forecasting horizon to match the rebalancing frequency. The mean returns decrease

4. Papers focusing on transactions costs for individual anomalies include Korajczyk and Sadka (2004),
Novy-Marx and Velikov (2019) and Chen and Velikov (2017).



with the horizon even when we take the transaction costs into account. However, longer
horizons offer better Sharpe ratios in the U.S. Internationally, longer horizons offer a
less-risky alternative compared to the one-month horizon.

Instead of relying on the forecast for one specific horizon, it is possible to use expec-
tations over different horizons to potentially achieve higher out-of-sample risk-adjusted
returns. We combine predictions for two different horizons via double sorting. We inde-
pendently sort stocks based on predicted cumulative returns from two different horizons.
Then we go long stocks which are in the top 15% on both horizons and go short stocks
which are in the bottom 15% on both horizons. In the U.S., this leads to large perfor-
mance gains over our benchmark, i.e. portfolios based on the one-month ahead forecasts.
Internationally, this also leads to higher returns; however, the difference is not that stark.

Further, we employ a buy/hold spread strategy, proposed by Novy-Marx and Velikov
(2019). It is a turnover reducing strategy where the hurdle is higher to buy into a position
than to hold a position once it is in a portfolio. We buy stocks based on predictions on a
certain horizon and hold stocks based on predictions on a one-month horizon. Buy/hold
spread portfolios in the U.S. have better risk-adjusted profitability when we buy based on
longer horizons and hold stocks based on one-month horizon. This holds for the interna-
tional sample as well; however, the difference is mild.

The rest of this paper is organized as follows: Section 2 describes the data and method-
ology used in our analysis. Section 3 contains multihorizon prediction results and decile,
double sorted and buy/hold spread long-short portfolios performances, with evidence from
the U.S. and international datasets. Section 4 summarizes and concludes our work.

2 Data and Methodology

2.1 Data

For the United States equity data, we use CRSP/Compustat Merged Database from the
Center for Research in Security Prices. For international equity data, we use Datastream
from Refinitiv. We also use the U.S. consumer price index to estimate transaction costs
and three month U.S. T-bill rate, which will be used for anomaly calculation, both from
Datastream. We also use Market minus risk-free rate for the U.S. and developed markets
from the data library provided by French (2020).

The dataset is filtered and preprocessed, to fix known errors in the databases and
exclude non-equity firms. We also need to restrict the investment universe in order to
avoid thinly traded stocks. This way, we mitigate, to some extent, the effect of market
microstructure noise in our results. The preprocessing of the dataset and the liquidity
filters are described in more detail in Appendix C.

We calculate 153 anomalies that were published in the academic literature. We follow
the list of anomalies and their construction from Tobek and Hronec (2020). All of the
anomalies are firm-specific with monthly frequency. The anomalies are cross-sectionally
ranked with respect to firm’s region, and missing observations are imputed with median
value. This is done to avoid problems with outliers and is a common procedure used for
example in Gu et al. (2020), Kozak et al. (2020).

Transaction costs are estimated at a monthly frequency using closing quoted spread



proxy (Chung and Zhang, 2014) and volatility over volume proxy (Fong et al., 2018). More
details on estimation of transaction costs can be found in subsection B.3.

2.2 Stochastic discount factor and predictive regressions

This section introduces the theoretical setting, the connection between the predictive
regressions for stock returns and stochastic discount factor. According to the law of one
price, Equation 1 should hold for any return Ry11 ;.

E; [Mi1Ri441] =0 (1)

where M,y is a stochastic discount factor. Similarly, Equation 2 should also hold for
any excess return Ry, ; = Rey15 — R{ 41, Where R{ is a risk-free rate.

Ep [My1Rf 1] =0 (2)

Equation 2 is equivalent to the Equation 3, which shows that expected excess return
for a generic asset i is a function of the systematic risk exposure f;; and the price of risk
At

By [ripe1] = B (3)

Cove(RE 4 ;s Miy1) and \, — Yare(Meen)
Var(Mi41) t— E¢[M; t41) -

According to this formulation, investors are only being compensated for holding sys-
tematic risk and not an idiosyncratic one. Further, the stochastic discount factor can
also be represented as transformed tangency portfolio, i.e. portfolio on the mean-variance
efficient frontier with the highest Sharpe ratio®. In general, a stochastic discount factor
can be obtained as a portfolio, which satisfies the fundamental asset pricing Equation 1,
or 2 when working with the excess returns. Portfolio weights of stochastic discount factor
can be seen in Equation 4.

where f;; = —

-1
w = Ky [R§+1Rf+1q E; [R{,4] (4)

These optimal weights represent one of the mean-variance efficient portfolios and can
be obtained by combining Equation 5 with Equation 3.

My =1—w! Ry, ()

In other words, we have a portfolio representation of stochastic discount factor or
traded factor Fy41 = w, RY, ;. Equation 3 can be rewritten as the so-called beta represen-
tation shown in Equation 6

Covy (Rf_g_l,iv Ft—i—l)

E: [Ri,] = Var; (Fi41)

Bt [Fyria] = Br il [Fiia] (6)

5. For more details, see Cochrane (2009) or Campbell (2017).



which forms a basis for the one-factor model in Equation 7.

Rit1; = BriFie1 + €t (7)

Predictive regressions for stock returns such as Lewellen (2015) or Gu et al. (2020) are
concerned with the conditional mean estimation as in Equation 8.

Rip1 =By (Rigq1) + €ipia (8)

Ei (Rii1) = g5 (Zis) 9)

where stocks are indexed as ¢ = 1, ..., Ny, months by ¢t = 1,...,T, Z;; are stock char-
acteristics or predictive signals and ¢M’ is a general function of these predictive signals
estimated to optimize the out-of-sample predictability of E; (R; 1)

This setting encompasses the setup of Lewellen (2015), who uses Fama-MacBeth regres-
sions and therefore the functional form of g% is a simple linear combination of ordinary
least squares. Directly addressing shortcoming of the ordinary least squares approach, Gu
et al. (2020) use variety of machine learning methods, such as Elastic net, Random Forests,
Gradient Boosted Trees and Neural Networks, to represent the function ¢g™%. Machine
learning methods aim to explicitly allow non-linearity, interaction of predictive variables,
regularization.

In this study, we focus on the conditional mean estimation, as in equations 8 and 9,
and our predictive regression setting is closest to the Gu et al. (2020). There are two
main differences. First, we focus on neural networks only as opposed to conducting the
horse-race of multiple machine learning models. It is already a well-documented fact,
that neural networks are the most powerful tools for explaining the cross-section of stock
returns, see Gu et al. (2020), Tobek and Hronec (2020) and Chen et al. (2020). We further
include gradient boosted trees as a form of robustness for our results. Second difference
and also the one being our main contribution is extending the forecasting horizon from
one month® to multiple horizons.

We also explicitly allow heterogeneity in predictability across horizons as can be seen
in Equation 10.

Ee (Ripyn) = " (Rigin) + €iven (10)

where h is the forecasting horizon. We consider horizons from monthly, h = 1, to two
years, h = 24.

Relationship between estimating the conditional mean of stock returns and stochastic
discount factor also holds in the multi-period setting. Extending the stochastic discount
factor from the one-period setting to multiple horizons is straightforward. The multi-
period stochastic discount factor is simply the product of single-period stochastic discount

6. Majority of results documented by the empirical asset pricing literature are based on the data with
monthly frequency and the same forecasting horizon.



factors.
H

Miiyn = H Myt ih—1,44n (11)
h=1

If the stochastic discount factor correctly conditionally prices the one-period returns,
then it also correctly prices the multi-horizon returns. It follows from the law of iterated
expectations” and the fact that multi-horizon returns are also products of single-period

. H
returns, i.e. Ryrg = [[h_1 Rivh—1,t4h

EM_pi1Re—p1) = E[My_p 1 Re—p My g1 Ry p1] =

(12)

= E[M;_ptRi_p1Et[My 1R 11] = E[M_p 1 Ri—p ),

The law of one price is therefore valid in multiple horizons and holds for the excess
returns as well.

2.3 Model estimation

For the model estimation we split the dataset into training, validation and testing sets
that keep the time ordering, following Gu et al. (2020) and Tobek and Hronec (2020).

To obtain the out-of-sample predictions, we train multiple models to include data that
was available at the moment. Our first model is predicting returns for the year 1995.
To do this, we take data from the beginning of the dataset to 1994 and split them in
proportion 7:3 (keeping the time ordering) into train and validation samples. These two
will be used when training the model. We use our model to make predictions for the year
1995. Our testing sample is beginning in December and ends in November. This means
that we are using December characteristics to predict January returns in case h = 1. We
repeat this procedure for the years 1996 to 2018, each time training a new model, to obtain
our out-of-sample predictions.

We use a feed-forward neural network that is described in subsection B.1. The goal
of the model is to aggregate all of the available input, anomalies, and condense them into
one real-valued output.

As our labels, we use cumulative returns at horizon h that were cross-sectionally de-
meaned. We estimate the model for each horizon separately. Normalized anomalies serve
as an input into the model. In case the firm is delisted during the period for which we
calculate cumulative returns we use returns that are available and disregard months when
stock is delisted.

Every time model is trained, we perform a hyperparameter search. The hyperparam-
eter space we search follows Tobek and Hronec (2020). We extend the hyperparameter
space to cover more degrees of models complexity which could also vary across horizons.
We test 6 different network architectures. The network can have either 1, 2 or 3 hidden
layers. We also choose between wide and narrow network. The wide network has 150 nodes
in each hidden layer, and the narrow has 32 nodes in the first hidden layer, 16 nodes in
the second hidden layer and 8 in the third hidden layer (if the layer is present). Batch size
is 256 or 1024. Dropout rate tested are 0.1, 0.01, and 0.001. Learning rate tested are 0.1,

7. B(X) = B(E(X | V).



0.01, and 0.001. The number of epochs is fixed at 25. We keep Adam optimization betas
at 0.9 and 0.999. The patience of early stopping is set to 5. The ensemble of five models
is used, each with different random seed initialization. Reducing learning rate on plateau
patience is applied after each epoch with learning rate halved if there is no improvement.
The best set of hyperparameters, which is determined by the lowest mean square error, is
used.

2.4 Portfolio formation

To assess the economic significance of our forecasts, we construct multiple portfolios.
We use three portfolio construction methods, all of them based on portfolio sorting, a
frequently used method in asset pricing®.

Decile sorting

In case of only one set of predictions, each month, we cross-sectionally sort stocks based
on the returns predictions. To construct a long-short portfolio, we buy firms that are in
the highest predicted return decile, and short firms from the lowest decile for each month.
We use equal-weighting, as in our empirical part we only focus on the universe of most
liquid stocks”.

Double sorting

A way to use two forecasts together, e.g. using different forecasting horizons or combining
different models, is double sorting. Stocks are independently sorted into three groups
based on each forecast separately. A long-short portfolio is constructed by buying the
firms that are in the high expected return group for both forecasts and shorting firms that
belong to the low expected return group for both forecasts.

Buy/hold spread strategy

Buy/hold spread, also referred to as banding, is a transaction cost mitigating technique.
The strategy aim is to reduce turnover. It works by having a stricter rule to trade into
position than to trade out of it. For example, 10%/20% strategy means that we buy stocks
that belong to the top 10% of the stocks and hold them as long as they are in the top 20%.
Similarly, we sell the lowest 10% of the stocks and hold them until there are no longer in
the bottom 20%.

While Novy-Marx and Velikov (2019) use this technique on only one model, or charac-
teristic, we extend this to combine two different models. We use two models with different
predicting horizons and use the one with the longer horizon as a buy signal and the shorter
horizon as a hold signal. The reasoning behind this is that we will buy (sell) longer-term
position, and then each month we check whether the new, additional information from the
shorter horizon supports holding the position or not. With this approach, we do not have
consistency between buy and hold signal as in one signal case where it holds that if a firm

8. See, a survey of Green et al. (2013).
9. See Section C.3.



is in buy category, then it is also in hold category. We thus adjust the rule to remove firm
from the portfolio when the two signals have opposing suggestions about the side of the
trade (buy signal would buy while hold signal would sell and vice versa).

Returns calculation

Independent of the type of portfolio we are constructing we have target actions assigned to
each firm at a given month. These actions are buy, sell, hold or nothing/remove from the
portfolio. Portfolio value is calculated iteratively, as trading needs to reflect the current
weights of the portfolio. This way, transaction costs can be accounted for properly as we
know the exact size of the trade.

As a turnover reducing strategy, staggered portfolio rebalancing can be used. It works
by prolonging holding period of strategy and rebalancing less often. Using this technique
and having a holding period longer than the forecasting period will result in a staleness
of the signal as we keep the firm in the portfolio past the intended period for which we
forecasted.

In case of having a holding period longer than one month, we create multiple trajec-
tories to use all of the information available. To create trajectories, we divide available
capital at the start of investing into b parts. Each trajectory will function as a separate
portfolio. Final portfolio value is obtained as a sum of values of trajectories. Portfolio
returns are obtained by weighting returns from trajectories using the value of trajectory.
The number of trajectories b will be equal to the holding period. The trajectories will be
rebalanced in a staggered manner - each month one of the trajectories, the one that was
rebalanced b months ago, is rebalanced to reflect the current target actions. This way, all
of the information is used.

Now we calculate returns for each trajectory. Target weights wj, are assigned to each
firm at each month. When we rebalance the trajectory, we divide available capital using
equal-weighting between the firms. For decile sorting and double sorting, we fully reflect
the current target actions. In buy/hold spread portfolio, some firms are kept in a portfolio,
and the rest of the capital is divided between firms we aim to buy or sell. For capital of
one unit, we aim to have long positions sum to one and short sum to minus one. When
not rebalancing, we use the current holding of stocks, that is we use normalized weight
from the end of the previous month.

When transaction costs are present, we need to account for that so that we do not
overbuy and maintain our total weights within limits. The actual weight that is bought is

Wiy = wiy — st - tey (13)
end,norm
tsie = wit — Wi, (14)
end,norm

where ts;; is trade size, tc;; are transaction costs, and w is the normalized

i(t—1)
weight at the end of the previous month for firm .
Weight of a firm at the end of a month is wft”d = wj - (1 + Ry), in case we hold a

position, and zero otherwise. The normalized weight is calculated as

norm __ 2wt

wporm — =it 15
S AT (15)



In case we remove given stock from our portfolio during month ¢ we will reflect the
trading costs incurred in the returns of that month. The return from holding a firm i
during month ¢ is calculated as w;; R;;.

For performance evaluation of portfolios, we use several metrics, with their definitions
in subsection B.2.

3 Empirical results

We obtain predictions of cumulative returns at multiple horizons using feedforward neural
networks, separately for the U.S. and the international dataset. The forecasts are from
1995 to 2018 (277 months). We investigate the predictive ability of those forecasts at
different horizons. We then provide results of portfolios constructed from multi-horizon
returns forecasts in the U.S. and internationally. As a robustness check, apart from feed-
forward neural networks, gradient boosted regression trees were also used to obtain the
forecasts, with results presented in Appendix D.

We follow the approach of Lewellen (2015) who assess the predictive ability of forecasts
using regression of realized returns on predictions. Table 1 shows the predictive ability
of the forecasts at different horizons. The t-statistics are calculated using Newey-West
correction with A + 4 lags as a way to account for the overlap in regressions. The predic-
tive slope is from regressing demeaned cumulative returns on predictions that were made
for the corresponding horizon. The slopes are positive, for most horizons significant, and
decreasing with longer horizons. This implies that the predictions contain too much vari-
ation, and we would need to shrink the predictions to obtain a more precise estimate of
expected return. R? is decreasing with the horizon, for both the U.S. and the international
sample suggesting that the predictability decreases with longer horizons. R? is higher for
international dataset.

Table 1: Predictive ability of return forecasts

The table reports the predictive ability of return forecasts at various horizons. The slope, t-statistics
and R? for horizon h are from a regression of the demeaned cumulative return on return prediction at
the corresponding horizon. Results are for the period between 1995 and 2018 and are either for U.S. or
international sample. Newey-West correction with h + 4 lags is applied. R? is reported in percentages.

U.S. International
Slope  t-stat R?> Slope t-stat R?

1 0460 24414 0.292 0.507 37.253 0.351
2 0.258 7.138 0.239 0334 20.803 0.329
3 0.117 2.021 0.121 0.157  3.085 0.177
4 0026 1.649 0.038 0.064 3.254 0.071
)
6
9

0.047 2707 0.052 0.016 2.107 0.024
0.005 1.221 0.004 0.017  3.015 0.025
0.007  2.009 0.009 0.022 1.903 0.037
12 0.003 1.005 0.003 0.001 1.079 0.003
24 0.003 1.873 0.004 0.003 4.300 0.007




The decreasing predictability with longer horizons conclusion matches that of Lewellen
(2015). Gu et al. (2020), being closer to our approach, have the opposite conclusion, they
report higher R? for yearly predictions than for monthly ones.

3.1 Evidence from the United States
Decile portfolios

We construct long-short decile portfolios. For simplicity, when presenting the results, we
keep the holding period b equal to the horizon of predictions used to calculate the weights
of the portfolio. It is intuitive rebalancing frequency as we have predictions for cumulative
h-months returns of a given stock which allows us to fully utilize the predictions. This
way, the turnover and transaction costs are lowered significantly for longer horizons.

Table 2 presents the mean, standard deviation, Sharpe ratio and maximum drawdown
both for portfolios without and with transaction costs included. One month long-short
portfolio results (that will serve as our benchmark) without transaction costs are consistent
with those of Gu et al. (2020) who report similar means and standard deviations. Their
models include macroeconomic variables and interactions between firm characteristics and
factors as opposed to our model, where we only include firm-specific characteristics. Tobek
and Hronec (2020) also report comparable results on U.S. sample, albeit with slightly lower
means and Sharpe ratios. This could be due to the fact that they include anomalies only
after publication date.

Portfolios that were formed using longer horizon predictions have lower mean returns.
This is more pronounced in a case without transaction costs as when transaction costs are
included longer horizons are less costly to trade. However, after accounting for transaction
costs, the Sharpe ratios are increasing with longer horizons, thus offering better risk-
adjusted returns than one-month portfolio.

Long-only component of strategies has a higher mean return but also a higher variance
and deeper maximum drawdowns compared to long-short strategy. The short component
of portfolios is not profitable on its own, with negative mean returns at all horizons after
accounting for transaction costs; however, it serves as a hedge during more turbulent
periods.

The turnover of the one-month strategy is 120%. This means that we sell (buy)
roughly 60% of firms from both the long and the short side of our portfolio and buy
different firms when rebalancing. Longer horizons have lower turnover by construction,
and it is approximately A times smaller than the turnover of the one-month portfolio.

Additional performance measures, Sortino ratio, conditional value at risk at 99%,
Alpha and Beta can be seen in Table A.1. Alpha and Beta are calculated with respect to
U.S. market returns. In Figure A.1 can be seen cumulative returns for decile portfolios.
There is a drop in profitability after 2003. The mean after this year is around 0.6-0.7%
with transaction costs for all horizons and the standard deviation is lower. This break
affects shorter horizons more. The longer horizons have higher Sharpe ratios and lower
drawdown compared to h = 1.

One may ask whether we cannot simply use one-month predictions and increase the
rebalancing frequency to decrease transaction costs. The answer is that it is better to
use predictions at the horizon of the desired holding period, with the exception of holding
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Table 2: Performance of long-short decile portfolios in the U.S.

The table shows the performance of long-short decile portfolios in the U.S. for the period between 1995
to 2018. Monthly mean returns, standard deviation, Sharpe ratio and maximum drawdown for strategies
labelled 1 to 24 are reported. The label corresponds to the horizon h for which we obtain the predictions
and at the same time the holding period for a given portfolio. In Panel A are results of the long-short
portfolio. The results are decomposed into long and short components in Panel B, and Panel C. The
displayed values are in percentages except for the Sharpe ratio.

Without transaction costs With transaction costs

Mean Std Sharpe MDD  Mean Std Sharpe MDD Turnover

Panel A: Long-short portfolio

1 1.76 5.23 1.16 -30.27 1.13 5.14 0.76 -37.31 120.20
2 1.33 4.23 1.09 -32.89 1.03 4.19 0.85 -36.76 58.43
3 1.11 3.74 1.03 -25.69 0.91 3.73 0.84 -27.31 40.36
4 1.06 3.37 1.09 -17.71 0.90 3.37 0.93 -20.15 32.03
5 0.88 3.09 0.99 -39.00 0.75 3.10 0.84 -41.96 26.68
6 0.89 2.87 1.07 -26.09 0.77 2.87 0.94 -29.24 23.02
9 0.76 2.44 1.08 -27.16 0.69 2.44 0.98 -29.15 16.15
12 0.73 2.18 1.15 -24.75 0.67 2.19 1.06 -26.16 12.78
24 0.82 2.46 1.15 -24.87 0.79 2.46 1.11  -25.67 6.73
Panel B: Long only component of the strategy
1 1.74 7.16 0.84 -53.23 1.42 7.10 0.69 -58.81 126.81
2 1.44 7.22 0.69 -65.59 1.29 7.21 0.62 -67.86 59.86
3 1.28 7.07 0.63 -67.06 1.18 7.07 0.58 -68.67 40.60
4 1.32 7.04 0.65 -63.21 1.24 7.04 0.61 -64.75 31.99
5 1.20 7.07 0.59 -64.57 1.14  7.07 0.56 -65.45 26.86
6 1.25 7.00 0.62 -63.72 1.19 7.00 0.59 -64.50 23.05
9 1.22  6.99 0.60 -65.81 1.18 6.99 0.58 -66.60 16.01
12 1.24 6.85 0.63 -64.52 1.21 6.85 0.61 -65.07 12.61
24 1.32 6.05 0.76 -54.24 1.31 6.05 0.75 -54.30 6.61
Panel C: Short only component of the strategy
1 0.01 8.02 0.01 -84.12 -0.30 7.98 -0.13 -86.39 113.49
2 -0.10 7.82 -0.04 -82.20 -0.26 7.81 -0.12 -83.65 56.93
3 -0.16 8.04 -0.07 -82.33  -0.27 8.03 -0.12 -83.36 40.08
4 -0.26  7.96 -0.11 -81.69 -0.35 7.96 -0.15 -84.30 32.02
5 -0.31 8.04 -0.13 -83.22  -0.38 8.03 -0.17 -86.26 26.47
6 -0.36  8.20 -0.15 -85.79  -0.42 8.20 -0.18 -88.02 22.96
9 -0.48 8.13 -0.21 -89.74  -0.52 8.13 -0.22  -90.86 16.27
12 -0.54 7.83 -0.24 -90.70  -0.57 7.84 -0.25 -91.50 12.94
24  -0.60 7.36 -0.28 -91.24  -0.61 7.37 -0.29 -91.65 6.86
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period of two months where the difference is minimal. The Sharpe ratio and the mean are
higher (mean by approximately 0.2% per month), and the standard deviation is lower for
those portfolios. This holds both for the case with and without transaction costs.

This is related to results presented in Figure 1. We show for multiple forecasting
horizons how are returns varying each month, for up to two years, after rebalancing the
portfolio. We show this for the case without transaction costs. In case we would want to
include transaction costs, the first month returns would be lowered and then the month
where we rebalance the portfolio. It shows us that one-month forecasting horizon is most
profitable the first month after rebalancing and then profitability lowers sharply. We can
see that for a forecasting horizon of one month, the optimal rebalancing frequency is one
or two months. For longer horizons about first five months are significant with decreasing
returns for longer holding-period months. For the horizons 12 and 24, we have significantly
positive return each month. It shows us that the underlying models are indeed learning
for their intended horizon.
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Figure 1: Average gross returns up to two years after rebalancing

The average monthly return z months after rebalancing. Returns of long-short decile portfolios for the
U.S. sample for the period between 1995 and 2018 are used. Portfolio returns are without transaction
costs. Confidence intervals around the means are presented.
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Double sorting portfolios

Double sorting portfolios were constructed by combining two predictions made at different
horizon and rebalanced each month (holding period b = 1). We combine one-month
forecasting horizon with longer horizons (2, 3, 6, 12, 24 months). Equal weights are used.
Cutoff points 0.15 for shorts, and 0.85 for the long side are used. The cutoffs were selected
so that we have a similar number of firms in our portfolio as in long-short decile case,
allowing us to better compare with our benchmark. The average number of firms in a
portfolio is between 180 and 340. The number of firms is lower when sorting on two more
distant horizons as the number of common firms decreases.

Table 3: Double-sorted portfolios performance in the U.S.

The table shows the profitability of a double-sorted long-short portfolio in the U.S. between 1995 and 2018.
Portfolio labels (1-2 to 1-24) show which two horizon predictions were used in double sorting. Results are
shown with and without transaction costs. Monthly mean returns, standard deviation, Sharpe ratio and
maximum drawdown are reported. Reported values are in percentages with the exception of the Sharpe
ratio.

Without transaction costs With transaction costs

Mean Std Sharpe MDD Mean Std Sharpe MDD Turnover

1-2 1.80 5.07 1.23 -28.31 1.20 4.97 0.84 -32.16 115.63
1-3 2.02 5.15 1.36 -27.43 1.43 5.05 0.98 -28.11 112.26
1-6 1.95 4.90 1.38 -22.36 1.36 4.82 0.98 -23.19 110.43
1-9 2.02 4.77 1.47  -23.25 1.45 4.70 1.07 -23.65 110.08
1-12 2.00 4.78 1.45 -25.09 143 4.73 1.05 -25.30 109.39
1-24 2.09 4.55 1.59 -21.89 1.50 4.50 1.15 -23.99 113.03

In Table 3 are the results of double-sorted portfolios. The best performing portfolio
is 1-24 horizon combination. After transaction costs, it has a mean return of 1.50%, an
increase of 0.4% per month compared to the benchmark. At the same time, we have
a lower standard deviation and maximum drawdown -24% while the benchmark has it
almost twice as big. The other double-sorted portfolios are either slightly better or better
than the benchmark. The turnover of double-sorted strategies is slightly lower than that
of the benchmark - this means that we pay roughly the same transaction costs as our
benchmark and that the benefits are not due to transaction costs differences but rather
by improved firm selection.

Additional performance metrics for double-sorted portfolios are reported in Table A.2.
Cumulative returns of double-sorted strategies in comparison with the benchmark can be
seen in Figure A.2. The benchmark strategy is underperforming compared to the double-
sorted portfolios.

Overall, double sorting portfolios can be considered better than one-month long-short
decile sorting benchmark for the U.S. Combining short-horizon predictions with longer
ones brings better returns and decreased risk.
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Buy/hold spread portfolios

Portfolios using buy/hold spread strategy are constructed. We use 10%/20% buy /hold
spread cutoffs. The portfolios should have lower turnover compared to long-short decile
strategy as it is harder to trade into position than to trade out of it. We use predictions
at various horizons as a buy signal and one-month predictions as a hold signal. Another
benefit of this strategy could be from combining multiple predictions into one portfolio.

Portfolios performance is reported in Table 4. We refer to strategies by the buy and
hold horizons that are used. Buy/hold portfolios have, on average, between 240 (for two-
year portfolio) and 290 (for one-month portfolio) firms. Thus it is comparable to the
number of firms in the decile portfolios and the double-sorted portfolios.

Table 4: Buy/hold spread portfolio performance in the U.S.

The profitability of long-short buy/hold spread portfolios in the U.S. for 1995 to 2018 period. We use
a buy/hold spread 10%/20% and report the results both without transaction costs and with transaction
costs. Buy and hold column show which horizons were used in the portfolio creation. Monthly mean
returns, standard deviation, Sharpe ratio and maximum drawdown are reported. All values are reported
in percentages except for the Sharpe ratio.

Without transaction costs With transaction costs

Mean Std Sharpe MDD  Mean Std Sharpe MDD Turnover
buy hold

1 1 1.61 4.93 1.13 -36.74 1.15 4.85 0.82 -41.59 81.74
2 1 1.60 4.82 1.15 -32.18 1.20 4.77 0.87 -36.37 71.01
3 1 1.65 4.57 1.25 -23.36 1.29 4,51 0.99 -24.23 62.16
4 1 1.53 4.53 1.17 -21.90 1.18 4.48 0.91 -22.77 58.56
) 1 1.41 4.7 1.17  -21.60 1.07 4.13 0.90 -24.43 96.79
6 1 1.58 4.05 1.35 -19.91 1.25 4.00 1.08 -20.31 54.87
9 1 1.39 3.53 1.36 -20.87 1.08 3.50 1.07 -24.25 51.99
12 1 1.28 3.23 1.37 -19.07 0.97 3.20 1.05 -22.69 50.37
24 1 1.28 2.87 1.54 -25.02 0.97 2.84 1.18 -28.85 49.59

The 1-1 portfolio has lower turnover by 40% compared to the benchmark, but it has
similar, slightly better performance. The benefit of reduced turnover is cancelled out by
decreased performance because of a less strict cutoff. Turnover is decreasing with longer
horizons. When we do not take transaction costs into account, the strategies are lower-
mean, lower-risk with comparable Sharpe ratios to our benchmark. Portfolio 24-1 has
the highest Sharpe ratio. It has slightly lower mean returns than our benchmark and a
turnover of only 50%. Portfolio 1-6 is a more risky alternative with Sharpe ratio 1.08 but
with higher returns and lower variance compared to the benchmark.

In Table A.3 is reported Sortino ratio, conditional value at risk, Alpha and Beta. Cu-
mulative returns of long-short buy/hold spread portfolios compared with our base model,
long-short decile portfolio at the one-month horizon, can be seen in Figure A.3. When
transaction costs are not taken into account, the benchmark model is superior to buy/hold
spread strategies. When transaction costs are present, buy/hold spread portfolios are bet-
ter as they have lower turnover and thus lower transaction costs.
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Comparing double sorting and buy/hold spread portfolios, double sorting is able
to achieve significantly higher returns than benchmark without increasing the variance.
Buy/hold spread portfolios at lower horizons provide slightly higher returns and slightly
lowered standard deviation while on longer horizons they offer a less risky alternative with
interesting return-risk balance.

We show that for the U.S. sample extending the rebalancing frequency while keeping the
forecasting horizon equal increases risk-adjusted profitability. Combining two predictions
using double-sorting has performance gains compared to the benchmark. Buy /hold port-
folios offer a lower-risk alternative to double-sorting portfolios.

3.2 International evidence

Using international dataset increases the sample size and should prevent data-snooping
or overfitting concerns. However, there are possible problems with including international
data. The countries may have different institutional setting, laws or accounting standards.
The preprocessing procedure we follow should lower these concerns. We train a feedfor-
ward neural network model on the international dataset (including the U.S.) to obtain
predictions of cumulative returns at different horizons. We form portfolios, in the same
way as U.S. portfolios, and evaluate their performance.

Decile portfolios

Long-short decile portfolio is created using the international sample forecasts. Forecasting
horizon of presented portfolios is equal to the rebalancing frequency. The average number
of firms in a portfolio is 600, 2.5 times more than in the U.S. setting.

In Table 5 are reported results of long-short decile portfolios with and without trans-
action costs. One month portfolio has a mean return of 1.82% with a Sharpe ratio of
1.92 without transaction costs. The mean return is similar as to our U.S. benchmark
model; however, the standard deviation is almost halved for the international portfolio.
Similarly, the mean return 1.07% of the international portfolio, after transaction costs, is
almost equal to that of the U.S. but with variance greatly reduced. Lower variance might
be because of the larger sample or diversification. The one-month strategy turnover is
120%, comparable to U.S. benchmark portfolio turnover. The results for the one-month
predicting horizon on the international dataset are consistent with the results of Tobek
and Hronec (2020).

Other portfolios on the longer horizon have similar or lower Sharpe ratios and lower
returns than one-month strategy when we account for transaction costs. For example, the
nine-month portfolio has the same Sharpe ratio as a one-month portfolio and return lower
by 0.24% after transaction costs, offering a lower-risk alternative.

Looking at the long and short leg component of strategies separately, there is a differ-
ence in contribution to return between international and U.S. case. Internationally, short
legs are more successful. For shorter horizons, the international portfolios short legs have
positive mean returns even after accounting for transaction costs.
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Table 5: Performance of long-short decile portfolios - international sample

The table shows the performance of long-short decile portfolios on the international sample from 1995 to
2018. Monthly mean returns, standard deviation, Sharpe ratio and maximum drawdown for strategies
labelled 1 to 24 are reported. The label represents the horizon h for which we obtain the predictions and
at the same time the holding period for a given portfolio. In Panel A are results of a long-short portfolio.
The results are decomposed into long and short components in Panel B, and Panel C. The displayed values

are in percentages except for the Sharpe ratio.

Without transaction costs

With transaction costs

Mean Std Sharpe MDD  Mean Std Sharpe MDD Turnover
Panel A: Long-short portfolio
1 1.82  3.29 1.92 -23.31 1.07 3.18 1.17 -27.11 123.41
2 1.34 3.40 1.36  -26.96 0.97 3.37 1.00 -30.15 60.33
3 1.07 3.15 1.18 -21.91 0.82 3.13 0.91 -24.67 41.18
4 0.95 2.93 1.13 -25.31 0.75 2.92 0.89 -30.43 32.71
5 0.97 2.59 1.29 -23.50 0.80 2.58 1.07 -26.63 27.26
6 0.89 2.43 1.26  -26.95 0.74 2.42 1.06 -29.73 23.46
9 0.93 2.36 1.36  -23.98 0.83 2.35 1.22  -25.60 16.52
12 0.90 2.38 1.30 -27.40 0.81 2.38 1.19 -28.48 12.94
24 0.79 251 1.09 -34.37 0.75 2.51 1.03 -35.06 6.85
Panel B: Long only component of the strategy
1 1.35 5.56 0.84 -49.33 0.95 5.53 0.60 -53.09 130.05
2 1.14 5.88 0.67 -61.63 0.95 5.87 0.56 -64.54 62.48
3 1.00 5.85 0.59 -61.20 0.87 5.85 0.52 -63.35 42.17
4 1.00 5.82 0.60 -59.17 0.90 5.82 0.54 -59.69 33.16
5 1.02 5.75 0.61 -60.85 0.94 5.75 0.56 -61.29 27.56
6 0.97 5.71 0.59 -61.24 0.90 5.71 0.55 -61.62 23.70
9 1.03 5.61 0.64 -59.14 0.98 5.61 0.60 -59.42 16.52
12 1.06 5.51 0.66 -59.40 1.02 5.51 0.64 -59.60 12.86
24 1.11 5.29 0.73 -57.19 1.09 5.29 0.71 -57.28 6.79
Panel C: Short only component of the strategy

1 0.48 6.10 0.27 -64.06 0.10 6.05 0.06 -71.58 116.96
2 0.24 6.28 0.13 -67.58 0.05 6.26 0.03 -72.43 58.24
3 0.13 6.28 0.07 -66.69 -0.00 6.27 -0.00 -70.10 40.20
4 0.02 6.20 0.01 -70.64 -0.08 6.19 -0.05 -73.91 32.25
5 0.01 6.20 0.00 -71.61 -0.08 6.18 -0.05 -74.28 26.93
6 -0.01 6.16 -0.01 -70.96  -0.09 6.15 -0.05 -73.50 23.19
9 -0.03 6.05 -0.02 -70.88 -0.09 6.04 -0.05 -72.63 16.48
12 -0.08 5.95 -0.04 -71.77  -0.12 5.94 -0.07 -73.13 13.01
24 -0.30 5.75 -0.18 -78.13 -0.33 5.75 -0.20 -78.69 6.91
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Overall, longer horizons decile portfolios are not superior compared to one-month strat-
egy, though some horizons offer a lower return-risk alternative. Comparing with the ev-
idence from the U.S., we note that including international data is beneficial by lowering
the variance and keeping returns comparable to U.S. strategy.

In Table A.4 are presented additional performance measures. In Figure A.4 are cumu-
lative returns of these portfolios with and without transaction costs in comparison with
one-month international benchmark portfolio.

Double sorting portfolios

Double-sorted portfolios are created using forecasts from two models with different fore-
casting horizon. Cutoff points 0.15 for the short side, and 0.85 for the long side are used.
The average number of firms in a double-sorted portfolio is between 490 (for 1-24 portfolio)
and 920 (for 1-2 portfolio).

In Table 6 are results of double-sorted portfolios. Portfolios 1-12 and 1-24 have the
highest Sharpe ratios, close to that of our international benchmark. They also have sim-
ilar Sharpe ratio as double-sorted portfolios in the U.S. sample but offer a lower return.
Turnover is similar to that of the benchmark one-month portfolio.

Table 6: Double-sorted portfolios performance - international sample

The table shows the profitability of double-sorted long-short portfolio using the international sample for
the period between 1995 and 2018. Portfolio label shows which two forecasting horizons were used in
double sorting. Results are shown with and without transaction costs. Holding period of portfolios is one
month. Monthly mean returns, standard deviation, Sharpe ratio and maximum drawdown are presented.
Reported values are in percentages with the exception of the Sharpe ratio.

Without transaction costs With transaction costs

Mean Std Sharpe MDD Mean Std Sharpe MDD Turnover

1-2 1.68 3.51 1.66 -29.46 0.96 3.42 0.98 -35.17 117.87
1-3 1.69 3.58 1.64 -27.06 1.00 3.50 0.99 -32.87 114.12
1-6 1.66 3.49 1.65 -29.06 0.98 3.40 1.00 -34.95 112.66
1-9 1.77  3.41 1.79 -28.05 1.09 3.31 1.14 -33.87 111.64
1-12 1.83 3.34 1.89 -23.41 1.14 3.24 1.22 -29.72 111.64
1-24 1.86 3.38 1.91 -16.04 1.16 3.28 1.23  -20.67 113.88

Table A.5 reports Sortino ratio, conditional value at risk, Alpha and Beta for double-
sorted portfolios. Cumulative returns of double-sorted portfolios and of benchmark model
are in Figure A.5.

Buy /hold spread portfolios

Long-short buy/hold spread (10%/20%) portfolios were constructed using predictions
made on the international sample using various forecasting horizons. The average number
of firms in a portfolio is between 570 and 650, with the number of firms being lower with
longer forecasting horizons.
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Results are reported in Table 7. Portfolios 9-1 and 12-1 have the highest Sharpe ratio,
which is similar to that of the one-month international benchmark. It offers slightly lower
returns. Other portfolios have similar returns as 9-1 but higher variance. Compared
to double sorting portfolios, it has lower returns but similar Sharpe ratios. Turnover of
buy/hold spread strategies is lower than benchmark turnover and comparable with the
buy/hold spread strategy in the U.S.

Table 7: Buy/hold spread portfolio performance - International sample

The profitability of long-short buy/hold spread portfolios on the international universe for the period
between 1995 and 2018. We use buy /hold spread 10%/20% and report the results both without transaction
costs and with transaction costs. Monthly mean returns, standard deviation, Sharpe ratio and maximum
drawdown are presented. All values are reported in percentages except for the Sharpe ratio.

Without transaction costs With transaction costs

Mean Std Sharpe MDD Mean Std Sharpe MDD Turnover
buy hold

1 1 1.84 3.21 1.98 -17.95 1.06 3.15 1.15 -25.51 78.66
2 1 1.67 3.46 1.67 -19.82 0.98 3.41 0.99 -26.46 67.08
3 1 1.60 3.40 1.63 -19.00 0.98 3.36 1.01 -24.97 58.71
4 1 1.52  3.28 1.61 -22.38 0.92 3.24 0.99 -27.31 95.15
5 1 1.51 3.09 1.70 -21.87 0.93 3.05 1.06 -27.01 53.24
6 1 1.43 3.05 1.62 -19.86 0.87 3.01 1.00 -26.79 51.32
9 1 1.51 2.84 1.84 -22.24 0.99 281 1.22 -27.12 47.81
12 1 1.44  2.77 1.80 -26.12 0.92 2.73 1.17 -31.37 46.85
24 1 1.33 3.06 1.51 -33.52 0.82 3.03 0.94 -38.85 46.79

Additional performance metrics for portfolios are reported in Table A.6. Beta co-
efficients are all close to zero. In Figure A.6 are cumulative returns of buy/hold spread
strategies and of benchmark strategy. Benchmark model and 1-1 buy /hold spread strategy
perform the best both before and after transaction costs.

Overall, portfolios made using international dataset offer lower-risk opportunities com-
pared to the U.S. sample. One-month long-short decile portfolio performs well, even after
accounting for transaction costs which are higher on the international sample than in
the U.S. There are comparable portfolios available when we consider longer horizons or
combination of horizons.

In our analysis, we are not investigating the option to combine the long and short
components from different models. However, this approach might be appealing from the
investor’s perspective.
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4 Conclusion

The fundamental question of asset pricing is why do different assets have different expected
returns. Over the last forty years, hundreds of anomalies, or potential predictors of stock
returns, were identified. Machine learning approach proved to be the best suited to ad-
dress the problems of ambiguity of functional form as well as the level of dimensionality
in the predictive regressions for stock returns. We examine the predictability of expected
stock returns across multiple horizons. We use neural networks and gradient boosted
trees in predictive regressions for stock returns using 153 anomalies documented in the
literature as variables. We document that predictability of returns using machine learning-
based predictive regressions decreases with longer forecasting horizons. The reason behind
decreasing predictability on longer horizons remains an open question and could be ap-
proached by examining the horizon-specific variable importance. We further address the
critique that the profitability of machine learning-based portfolios disappears after the
transaction costs. After accounting for the transaction costs, reducing the rebalancing
frequency while matching the corresponding forecast horizon increases the risk-adjusted
returns of machine learning-based portfolios. We also leverage return predictions for mul-
tiple horizons via double-sorted portfolios and achieve profitability improvement on the
U.S. universe of stocks. Finally, we employ a turnover reducing strategy, buy/hold spread,
and show higher risk-adjusted profitability in the U.S.
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A Additional tables and figures
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Figure A.1: Cumulative returns of long-short decile portfolios in the U.S.

The figure shows cumulative returns of long-short decile portfolios without and with transaction costs on
the U.S. sample. The portfolio label is the forecasting horizon in months and holding period of the strategy.

Table A.1: Performance measures of long-short decile portfolios in the U.S.

Sortino ratio, conditional value at risk at 99%, Alpha and Beta (in comparison with U.S. market returns)
are reported for long-short decile portfolios for the period between 1995 and 2018. Portfolio label is the

forecasting horizon and the holding period for the portfolio.

Without transaction costs

With transaction costs

Sortino CVaR 99% Alpha Beta Sortino CVaR 99% Alpha Beta
1 2.27 -9.63 1.92 -0.22 1.33 -10.56 1.29 -0.22
2 1.97 -8.50 1.43 -0.13 1.43 -8.94 1.12 -0.13
3 1.88 -7.38 1.20 -0.12 1.46 -7.66 1.00 -0.12
4 2.01 -6.52 1.13 -0.10 1.64 -6.82 0.97 -0.10
5 1.57 -6.84 0.94 -0.08 1.29 -7.06 0.81 -0.08
6 1.83 -5.90 0.97 -0.11 1.56 -6.08 0.86 -0.11
9 1.74 -5.23 0.80 -0.06 1.53 -5.35 0.73 -0.06
12 1.90 -4.65 0.74 -0.02 1.71 -4.73 0.68 -0.02
24 2.07 -4.59 0.83 -0.02 1.97 -4.65 0.80 -0.02
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Figure A.2: Cumulative returns of long-short double sorting portfolios in the U.S.

The figure shows cumulative returns on a logarithmic scale of the double-sorting strategy and of long-
short decile portfolio at horizon one in the U.S. The two numbers correspond to horizons on which we
double-sorted. The holding period is one month.

Table A.2: Double-sorted portfolios performance metrics - in the U.S.

Sortino ratio, conditional value at risk at 99%, Alpha and Beta (with regards to market returns in the
U.S.) are presented for long-short double-sorting portfolios for the period between 1995 and 2018. Portfolio
labels are the two forecasting horizons which were used in double sorting.

Without transaction costs With transaction costs

Sortino CVaR 99% Alpha Beta Sortino CVaR 99% Alpha Beta
1-2 2.57 -8.87 1.94 -0.19 1.56 -9.70 1.35 -0.20
1-3 3.02 -8.50 2.19 -0.23 1.95 -9.27 1.60 -0.23
1-6 3.21 -7.65 2.14 -0.26 1.99 -8.43 1.56 -0.27
1-9 3.35 -7.58 2.24 -0.30 2.13 -8.35 1.67 -0.30
1-12 3.11 -8.07 2.22 -0.30 1.99 -8.83 1.65 -0.31
1-24 3.35 -7.83 221 -0.18 2.13 -8.78 1.63 -0.18
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Figure A.3: Cumulative returns of buy/hold spread portfolios in the U.S.

Cumulative returns of long-short buy/hold spread portfolios compared with the benchmark model. We
use buy/hold spread 10%/20%. Portfolio label signifies horizon based on which we buy and hold stocks,

respectively.

Table A.3: Buy/hold spread portfolio performance metrics - U.S. sample

Sortino ratio, conditional value at risk at 99%, Alpha and Beta (in comparison with U.S. market returns)
are reported for long-short buy and holds spread for the period between 1995 and 2018. We use 10%/20%
buy/hold spread cutoffs. Portfolio label signifies horizon based on which we buy and horizon based on
which we hold stocks respectively.

Without transaction costs

With transaction costs

Sortino CVaR 99% Alpha Beta Sortino CVaR 99% Alpha Beta
buy hold
1 1 2.10 -9.17 1.71 -0.14 1.42 -9.74 1.25 -0.14
2 1 2.32 -8.87 1.71 -0.15 1.62 -9.49 1.31 -0.15
3 1 2.68 -7.79 1.77 -0.17 1.96 -8.24 141 -0.17
4 1 2.46 -7.59 1.65 -0.17 1.77 -8.12 1.30 -0.17
D 1 2.26 -7.98 1.51 -0.14 1.60 -8.47 1.17 -0.14
6 1 2.94 -6.67 1.74 -0.23 2.17 -7.06 1.41 -0.23
9 1 2.91 -6.19 1.54 -0.21 2.08 -6.54 1.23 -0.21
12 1 2.95 -5.44 1.42 -0.19 2.03 -5.85 1.11 -0.19
24 1 3.10 -5.04 1.35 -0.11 2.14 -5.45 1.05 -0.11
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Figure A.4: Cumulative returns of long-short decile portfolios on international sample

The figure shows cumulative returns of long-short decile portfolios without and with transaction costs.
The portfolio label is the forecasting horizon in months and the holding period of the strategy.

Table A.4: Performance measures for long-short decile portfolios - International sample

Sortino ratio, conditional value at risk at 99%, Alpha and Beta (in comparison with international market
returns) are reported for long-short decile portfolios for the period between 1995 and 2018. Portfolio label
is the forecasting horizon and the holding period.

Without transaction costs With transaction costs

Sortino CVaR 99% Alpha Beta Sortino CVaR 99% Alpha Beta
1 4.53 -4.95 1.89 -0.12 2.26 -5.71 1.13 -0.11
2 2.53 -6.64 1.39 -0.08 1.70 -7.09 1.02 -0.08
3 2.17 -6.29 1.11  -0.06 1.56 -6.63 0.86 -0.06
4 2.09 -5.43 0.97 -0.03 1.55 -5.73 0.77 -0.03
5 2.54 -4.52 0.98 -0.03 1.98 -4.79 0.82 -0.03
6 2.42 -4.32 0.91 -0.03 1.93 -4.52 0.76 -0.03
9 2.76 -4.10 0.93 0.01 2.36 -4.25 0.82 0.01
12 2.61 -4.29 0.88 0.03 2.30 -4.40 0.80 0.03
24 2.13 -4.35 0.76  0.06 1.98 -4.41 0.71  0.06
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The figure shows cumulative returns of the double sorting strategy in comparison with long-short decile
portfolio at horizon one, both for the international universe. Portfolios are plotted before and after ac-
counting for transaction costs. Portfolio label signifies the two horizons that are used to double sort. The
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Table A.5: Double-sorted portfolios performance metrics - international sample

Sortino ratio, conditional value at risk at 99%, Alpha and Beta (with regards to the international market
returns) long-short double sorting portfolios for the period between 1995 and 2018. Portfolio labels are

the two forecasting horizons which were used in double sorting.

Without transaction costs

With transaction costs

Sortino CVaR 99% Alpha Beta Sortino CVaR 99% Alpha Beta
1-2 3.70 -5.74 1.75 -0.12 1.83 -6.47 1.03 -0.12
1-3 3.70 -5.88 1.77 -0.14 1.88 -6.61 1.07 -0.13
1-6 3.59 -5.83 1.75 -0.16 1.82 -6.56 1.07 -0.15
1-9 4.16 -5.37 1.86 -0.16 2.18 -6.10 1.17 -0.15
1-12 4.72 -4.82 1.90 -0.13 2.46 -5.52 1.21 -0.12
1-24 4.63 -5.15 1.91 -0.08 2.42 -5.91 1.20 -0.07
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Figure A.6: Cumulative returns of buy/hold spread portfolios on international sample

Cumulative returns of long-short buy/hold spread portfolios in comparison with the base model, both on
the international universe. We use buy/hold spread of 10%/20%. Portfolio label signifies horizon based
on which we buy and hold stocks, respectively.

Table A.6: Buy/hold spread portfolio performance metrics - International sample

Sortino ratio, conditional value at risk at 99%, Alpha and Beta (in comparison with the international
market returns) for long-short buy/hold spread portfolio made on the international universe for the period
between 1950 and 2018. We use buy/hold spread of 10%/20%. Portfolio label signifies horizon based on
which we buy and hold stocks, respectively.

Without transaction costs With transaction costs

Sortino CVaR 99% Alpha Beta Sortino CVaR 99% Alpha Beta
buy hold

1 1 4.81 -4.92 1.87 -0.05 2.25 -5.77 1.08 -0.05
2 1 3.76 -5.64 1.69 -0.03 1.87 -6.36 1.00 -0.03
3 1 3.69 -5.62 1.63 -0.05 1.92 -6.32 1.00 -0.04
4 1 3.53 -5.40 1.54 -0.03 1.84 -6.08 0.94 -0.03
5 1 3.86 -4.94 1.53 -0.04 2.02 -5.58 0.95 -0.03
6 1 3.65 -4.87 1.45 -0.04 1.89 -5.46 0.89 -0.04
9 1 4.47 -4.22 1.53 -0.04 2.45 -4.80 1.00 -0.03
12 1 4.02 -4.52 1.44  0.00 2.20 -5.05 0.92 0.01
24 1 3.19 -5.13 1.30 0.05 1.71 -5.67 0.79 0.06
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B Methodology

B.1 Machine learning

This section gives an overview of the feedforward neural networks, gradient boosted trees,
and algorithms that will be used. For more details, see Goodfellow et al. (2016) or Hastie
et al. (2009).

Feedforward neural network

Feedforward neural network consists of an input layer of raw predictors, one or multiple
hidden layers and output layer. Each layer is composed of nodes, also called neurons. The
nodes can be fully connected to all nodes in the previous and next layer or only to some
of them.

Figure B.1 shows an example of a neural network that is fully connected, has three
inputs, two hidden layers, each with four neurons and an output layer with two outputs.

Hidden Hidden
layer 1 layer 2

SO

KN Y o
S

Figure B.1: Example of multilayer fully connected neural network.

Input layer

Neuron 7 is defined as:

m
yi = (si+bi), si=) wiz (16)
Jj=1
with z1,...,x,, being neuron inputs, w1, ..., w;, are synaptic weights, b; is bias term for

a given neuron, ¢(.) is the activation function, and y; is the output of the neuron 1.

Commonly used activation function, and the one that we will be using, is called rectified
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linear unit (ReLU) and it is defined as:

0 ifz<O

x  otherwise (A7)

ReLU(z) = {
Other used types of activation functions are, for example, sigmoid, hyperbolic tangent,
piece-wise linear or threshold activation functions.

Optimization

Machine learning minimizes loss function'®. For a function with one input, the derivative
f'(x) provides us with the slope of f(z) at z, telling us in which direction to move.
We might encounter multiple problems that will make it impossible to reach the global
minimum using this procedure. Those are local minimums or saddle points. In the case
of working with multiple inputs, we need to work with gradients, and we move in the
direction the steepest descent - known as gradient descent.

Stochastic gradient descent (SGD) is an extension of gradient descent. With larger
datasets, the time to move even one step in the right direction using gradient descent
takes too long as we need to use the entire dataset to compute the gradient. Instead, we
approximately estimate the gradient using a small and random sample called minibatch.
The approximation greatly speeds up the optimization and allows us to work with large
datasets.

We will be using an extension of stochastic gradient descent, namely Adam optimiza-
tion algorithm (short for adaptive moments) proposed by Kingma and Ba (2014). It is
based on computing adaptive estimates of first and second moments of gradients.

When we move in the direction of the steepest descend, the size of the step, ¢, is
called a learning rate. It is a positive scalar, and there are different methods of choosing
the learning rate. The simplest one is to set it to a small constant. To speed up the
convergence, it is common to decrease the learning rate during the learning process. We
will use decaying learning rate, more specifically reducing learning rate on a plateau by
a fixed factor when after a certain number of epochs, there was no improvement to vali-
dation error. The epoch term means that the network has seen the entire dataset once.
Other learning rate decay schemes include linear decay until reaching fixed minimum or
exponential decay.

When using training feedforward neural network or obtaining predictions, forward
propagation is employed. Forward propagation is the calculation of the final output of
the model, given the inputs. This includes calculating the output value of each node in
the network so that we can obtain the final output. With predictions and real values
available, we compute the loss £(6).

As a loss function, we are using mean squared error. It is shown in Equation 18.
| N
L£(0) = Zl(en —0,)? (18)
n=

where N is the batch size, 6, is the target value, and én is the estimated value of nth
observation.

10. Also called objective function, criterion, or error function.
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The backpropagation algorithm efficiently calculates the gradient of the loss func-
tion with respect to parameters of the network. The efficiency comes from using the chain
rule, and from iterative calculation backwards through the network, which avoids unnec-
essary calculations. The calculated gradient allows us to see which node is responsible for
most of the error and lets us change the parameters accordingly. We adjust the weights
by a learning rate multiplied by the gradient of the loss function with respect to a given
weight.

Regularization techniques

Regularization of neural networks is for controlling the kind of functions we allow our model
to take or specifying which functions are preferred. Regularization is a modification to
the neural network with the aim of reducing generalization error, to prevent overfitting.
Regularization techniques we use are early stopping, batch normalization, ensemble and
dropout.

Early stopping is a form of regularization. When we train the model, the training
error reduces over time; however, the validation error is rising after a certain time, sig-
nalling overfit. Early stopping is a rule to stop the learning when after a certain number
of epochs, given by the patience parameter, the improvement to the validation error is
lower than the specified threshold. We set this threshold to zero so that we stop learning
when there is no improvement.

Batch normalization by Ioffe and Szegedy (2015) is used to prevent an internal co-
variate shift. Internal covariate shift means that the distribution of inputs to the layer
changes during the learning as the parameters of preceding layers change. It poses a prob-
lem as the layers need to continuously adapt to the changing distribution and small changes
to the parameters could be greatly amplified further in the network. Batch normalization
addresses this with normalizing of the input of each layer for each minibatch during the
training. It allows us to use higher learning rates, and it also works as a regularization.

Ensembles are used to lower the generalization error by averaging several models. We
train the model multiple times with different starting seed and average the predictions from
them to get the final prediction. The ensemble will work at least as well as any individual
models, and if models make independent errors, the ensemble will be better. The different
initialization works to get at least partially independent errors. The disadvantage of using
ensembles in machine learning is their computational cost.

Dropout is a technique developed by Srivastava et al. (2014) to prevent overfitting
in a similar way as an ensemble but using only one model. It provides an efficient way to
combine many network architectures by randomly dropping nodes and their connections
from the network as we train it. It is preventing the nodes to co-adapt too much. At
each step, the node is activated with probability p and connected to the next layer with
weight w. When we predict, we use a single unthinned network that has smaller weights
to account for the time the node was not activated during the training.

Gradient boosted regression trees

Gradient boosted regression trees employ decision trees and a technique called gradient
boosting. Decision trees can be divided into classification trees where the leaf contains
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the class to which the data supplied belongs and regression trees where the leaves are
real numbers. Classification and Regression Tree (CART) is a term which covers both of
these categories. CART creates binary trees - each non-terminal node is split into two
nodes. Benefits of trees include intuitive interpretation or the fact that it allows for both
numerical values and categorical values in one model.

As only one tree is usually not sufficiently strong to be used alone, techniques were

developed to combine multiple trees, called ensemble models. Examples are boosted trees,
random forest or rotation forest.

Boosted regression trees were first proposed by Friedman (2001). Gradient boosting
is a machine learning technique which works by using an ensemble of models that are
iteratively learned. In this iterative learning, each added model is working to correct
the mistakes of the current ensemble model. These ensemble models are often, but not
necessarily, trees.

We use the implementation of boosted trees called XGBoost (Extreme Gradient Boost)
by Chen and Guestrin (2016). It employs computing of second-order gradients to improve
the performance, allows regularization to improve generalization.

The tree is defined as
fi(x) :wq(w),weRT,q:Rd%{1,2,--- ,T} (19)

where w is a vector of scores on leaves and ¢ is a function which assigns each observation
to the corresponding leaf. T' is the number of leaves.

A tree ensemble with K additive functions then forms the final model and final pre-

dictions.
K

U; = const. + Z vie(xi), fx€F (20)
k=1

where F is the space of all CART. f is an independent tree. Each added tree is multiplied
by shrinkage parameter v. const. is our starting point before fitting the first tree.

Our loss function is the following:

L(¢) =D 1) + > Q(fr) (21)
; k

where Q(f) = 7T + 3A||w|? is the regularization term which penalizes the complexity and
avoids overfitting. [ is the differentiable convex training loss function; in our case, we will
use mean square error.

The model is trained using additive strategy. At iteration ¢ (out of a total of K) the
prediction is:
(¢ (t—1
0 = dlai) =9 + vy (@) (22)
where v is the shrinkage parameter that shrinks the influence of the tree that is being

added to avoid overfitting. It also allows subsequent trees room for improvement of the
model.

When learning, at t-th iteration, we fit tree f; which minimizes
n
(t—1
£O =30 (530 + £ x0)) + Q) (23)
i=1
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Note that the goal of f; is to minimize loss with respect to residuals from the previous
(t-1)

i

ft from this equation can be approximated by the second-order Taylor approximation

predictions g while taking into account the regularization term.

n

1
ED> [l (9 3470) + gufi (x0) + 5haf? (x) | +Q(f) (24)
i=1
where g;, h; are first and second-order derivations of the loss function.

Ir and I}, are instances of sets of right and left nodes, I is their union. To evaluate
whether to split node or not, we compare Ir and I; with the I to see whether there is
loss reduction after splitting. More formally

2 2 9
o 1 [(Bens)  (Sens)  (Sew
split — 2 ZiGIL h; + A ZiEIR hi +\ Zie[ h; + A

— (25)

where 7 is the regularization term on the additional leaf. We select the best split based
on Lgpyt, and if it is positive, we add the branch to the tree.

When fitting the tree, it is not feasible to search through all of the possible splits. We
instead have a certain number of quantiles on a characteristic, and we test only these splits
in our search.

The XGBoost also employs feature subsampling which prevents overfitting and also
speeds up the optimization. Excluding a random portion of characteristics in each tree
allows us to get more diverse models by ensuring that not all of the trees are split on the
dominant characteristic (i.e. firm size).

B.2 Performance evaluation

The most apparent metrics are the mean and standard deviation of returns. The downside
of using standard deviation to be mindful of is that positive returns are treated the same
way as negative ones.

Sharpe ratio is defined as the difference between average return and risk-free rate for
a given period divided by the standard deviation of the rate of return. Formally:

E Ry — Ry

SRy =
var (Ry,)

(26)

Proposed by Sharpe (1966) under the name reward-to-variability ratio, it became a com-
monly used measure of performance. Sharpe (1994) proposes an extension to Sharpe ratio
so we can also compare to the benchmark changing over time.

E [Ry, — Ry
var(Ry — Ryp)

SRy = (27)

Sharpe ratio weak point is that it takes standard deviation as risk, disregarding whether
it is upside or downside volatility and treating both the same.

Sharpe ratio is usually presented in the annualized form. It can be calculated by
multiplying the Sharpe ratio with the square root of 12 in case we are using monthly data.
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A crucial and often overlooked fact is that Sharpe ratio is also simply a rescaled t-
statistic for statistical significance of mean being different from zero. T-statistic can be
obtained from the Sharpe ratio by multiplying by the square root of the number of observa-
tions, and dividing by the square root of 12 in case ratio was annualized. When comparing
different strategies with the same number of observations, the ratios are proportional to
the t-statistic.

To counter some of the problems of Sharpe ratio, we include Sortino Ratio. It is a
modification of Sharpe ratio by Sortino and Price (1994) that penalizes only returns that
are below minimum acceptable return (MAR). This way only the variation below MAR is
counted in the denominator. Sortino ratio is calculated as:

E[Ry — MAR)
\/% Zle min (0; Ry i, — MAR)2

Denominator measures downside deviation. Minimum acceptable return of 0% will be
used when using Sortino ratio.

Sortinog =

(28)

So far mentioned metrics do not consider the tail risk of a portfolio. The Value at
Risk (VaR) is a measure of risk of loss that tells us how much we can lose with specified
confidence level o € (0,1) in a set time period. From Follmer and Schied (2011):

VaRy(X)=inf{z e R: P(X +2<0)<1-—a} (29)

VaR is not a coherent measure as it fails to hold the subadditivity axiom of coherence.
Meaning that the VaR of holding a portfolio is not necessarily equal to or lower than the
sum of VaRs of individual components.

Conditional Value at Risk (CVaR), for which the subadditivity holds, is defined as:
1 [e%
CVaR, = * / VaR,(X)da (30)
0

This measure is sometimes called Expected Shortfall. It gives the average value at risk
at level v € (0,1) of a position X. For example, CvaR;y is the expected return on the
portfolio in 1% of the worst cases.

Portfolio drawdown (underwater) is defined as a drop in portfolio value compared to

the achieved maximum in the past. With R, (w1, ..., wy,t) being the cumulative portfolio
return over portfolio holding time drawdown is defined as
D(wa t) = Org'?%{t {Rp(wa T)} - Rp(w7 t) (31)
Maximum Drawdown up to time T is:
MDD(T) = 0r_<nTaSXT {D(w,7)} (32)

To compare our results with a benchmark, we use a single-index model developed by
Sharpe (1963), which is an asset pricing model measuring risk and return of a portfolio
relative to another portfolio. It is defined as

Rei— Ry =i+ Bi(Rymy — Ry) + €y (33)

Where R, is the return of our portfolio, Ry is the market return, and Ry is the risk-free
rate. The two coefficients, Alpha and Beta, are of interest as they tell us the abnormal
return and exposure to market movements.
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B.3 Transaction cost proxies
Turnover

The turnover, the percentage of monthly change of holdings, is defined as:

Turnover; = gle Z |tsit| (34)
2
where ge is gross exposure, the sum of long and short positions divided by the capital,
and ts;; is the trade size. Turnover of 200% means that the entire portfolio was liquidated
and new stocks were bought, for both the long side and the short side of the portfolio.
Turnover of a portfolio is indicative of transaction costs paid. However, some portfolios
may select especially costly firms to trade while keeping the turnover low.

We are using our preprocessed daily dataset to estimate transaction costs for each firm
at a given month. Closing quoted spread (Chung and Zhang, 2014) and volatility over
volume (Fong et al., 2018) proxies are used.

Closing quoted spread

Closing quoted spread proxy by Chung and Zhang (2014) is defined as:

2(ask — bid)
T Z ask + bid (35)

with bid being the closing bid, ask is the closmg ask and T is the number of days for a
given month. If the daily value of @S is missing or negative, it is not included in the
calculating of the average. The downside of the quoted spread is that it is not available
for the whole sample period in all of the regions as it requires closing bid and ask, which
is frequently not available in the earlier periods.

Volatility over volume (% spread)

Volatility over volume(VoV) (% spread) proxy was introduced by Fong et al. (2018), and
it is defined as:

52/3

VoV (% spread) = 8 (36)

avg voll/3
with o being the standard deviation of daily returns, avg vol being average daily trading
volume for a given month. The trading volume is in U.S. dollars and is deflated to 2000
prices. It roughly measures the fixed component of transaction costs.

Fong et al. (2018) benchmarked it to other transaction cost proxies and showed that
only closing quoted spread outperformed this proxy. VoV proxy has less missing obser-
vations than quoted spread as it uses returns and volume only and not closing bid and
ask.

We combine the two proxies them by using closing quoted spread and in case of missing
observation we fill in with volatility over volume and then with 5%. Average estimated
transaction costs over time are displayed in Figure B.2.
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Figure B.2: Average estimated transaction costs

Estimated transaction costs cross-sectional average for the U.S. and international sample (with the U.S.
excluded). Transaction costs are estimated using closing quoted spread (Chung and Zhang, 2014) and
volatility over volume (Fong et al., 2018).

C Data preprocessing and filtering

C.1 U.S. data processing

CRSP/Compustat Merged Database from the Center for Research in Security Prices is
used. It is comprehensive, survivorship bias-free and accurate database. CRSP at daily
and monthly frequency is used, daily is used for estimating transaction costs and monthly
for returns and characteristics calculation. COMPUSTAT fundamental data are used
at a yearly frequency. Quarterly fundamentals are available; however, the international
coverage of quarterly data is problematic, so we do not use them to keep the U.S. and
international datasets comparable. The dataset includes stocks that are (or were) listed
on the New York Stock Exchange (NYSE), the Nasdaq Stock Exchange (NASDAQ) or the
American Stock Exchange (AMEX) among others. The sample used is from the period
between 1963 and 2018.

Handling of CRSP and COMPUSTAT data mostly follows Bali et al. (2016). For the
monthly dataset, we need to ensure that we only include securities that were available to
trade on the last day of the month . We thus include only firms with starting date at
the latest on the last day of the month ¢ and ending date has to be on the last day of the
month or later. Preprocessing of daily and monthly dataset is otherwise the same.

To get U.S. shares only, we filter based on SHRCD share code being 10 or 11. To
include only common equity firms in our dataset, we select firms with exchange code
(EXCHCD) 1, 2 or 3.

Market capitalization is calculated as the absolute value of the number of shares out-
standing (SHROUT) times the price of the stock at the end of the month (ALTPRC).
ALTPRC is used as PRC variable is missing or zero if the stock was not traded. Absolute
value is taken as CRSP reports negative price, equal to the average of bid and ask, if
the stock was not traded that day. If SHROUT or ALTPRC is missing, we mark market
capitalization as missing.
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As for returns, most of the time return (RET) variable can be used with the exception of
the last month when the firm is active. When the firm delists, the RET is not corresponding
to the real return that an investor would get. If the stock is delisted, but the investor does
not liquidate the position (this behaviour is expected as it is sudden change without much
warning in many cases) he ends up with untradeable stock. The CRSP includes delisting
returns DLRET, the reason for the delisting and date of delisting.

C.2 International data processing

As a source of international cross-sectional equity data, we use Datastream. We use a
sample from January 1980 to 2018. The starting year is limited by the coverage of fun-
damental data in the Worldscope database. Datastream comprises of several databases
which we will use. Daily pricing data (unadjusted price, total return index, market value,
number of shares outstanding, unadjusted volume, dividends and others), yearly funda-
mental data from Worldscope database (i.e. accruals, inventory or earnings) and I/B/E/S
Estimates (Institutional Brokers Estimate System) are used. Where currency is needed,
we use U.S. dollars.

One of the reasons why the research is focused on the United States equity market
is the high reliability of the data available. For the U.S. we have available CRSP and
COMPUSTAT datasets which are well checked and reliable. Having reliable international
dataset is valuable as we can provide evidence that anomalies found in U.S. data are not
data snooping.

In order to get the dscodes (identificators of firm listings) we use constituent lists
provided by Datastream and Worldscope. These lists include Datastream research lists,
Datastream dead lists and Worldscope coverage lists for each country. These lists contain
around 230 thousand dscodes. This number is, however, greatly reduced when we filter
our dataset.

We perform static screening (using only static variables) with the goal of removing
duplicates and ensuring we include only common equity firms. We keep only firms marked
as major listings. This excludes listings of secondary share classes of a firm. We also
keep only listings that are traded on the domestic market. Doing this, we get only one
listing per firm. Stocks with the type of instrument other than equity are then filtered out.
This filters some of the non-equity listings (bonds, options, etc.); however, this indicator
variable is not entirely reliable.

We sort industries, using variable INDN which provides the name of the industry, into
common and uncommon equity and exclude listings which belong to uncommon equity.
Examples of filtered out industries are investment trusts, real estate investment trusts,
mutual funds or exchange-traded notes. We search the name of the firm for suspicious
word parts to filter out non-common equity further. If the name of the firm contains
suspicious words, it is checked manually. For the list of word parts, see Griffin et al. (2010).
Some of the words are checked on all firms, and some are country-specific as some of the
countries have different ways to mark preferred shares, non-voting shares and others. We
exclude a firm if it does not have pricing or fundamentals coverage.

We continue with dynamic screening which is to eliminate errors in daily and then
monthly pricing data. Daily pricing data are padded, meaning that if stock is not traded
on a given day, the last available price is reported. We delete observations after the firm is
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delisted. This is done by trimming observations when return index in the original currency
does not change at the end of the series for each firm. The last observation of the firm is
treated as delisting return because Datastream does not report separate delisting return
as CRSP. Order of magnitude of our variables is adjusted so that they are the same as in
CRSP dataset.

We need to preprocess data first on a daily frequency so that they can be used for
transaction cost calculations and then create a monthly dataset that will be used in the
models. We drop observations with missing return index. We calculate the daily return
from return index. Return is set to missing in cases when daily returns are higher than
500% or when the price is more than 100,000 dollars. Datastream was rounding prices to
the nearest penny before decimalization. This causes nontrivial differences in calculated
returns when prices are small. Because of this, we set return to missing for a price that is
less than 0.1 USD. Alternative price screens of 1 USD or 0.5 USD work as well (Ince and
Porter, 2006). In cases when the return index is smaller than 0.01, we set corresponding
return to missing as these cases are heavily affected by rounding. We fix cases when the
return is abnormal, but there is a reversal the next day. This is when daily return is over
200%, but two-day return is less than 110%.

We divide dividends by a fixed value if the dividend is greater than half the adjusted
price. Schmidt et al. (2015) documents that dividend data for some European countries
are erroneous. They observe dividends which are unusually large about ten times the
actual price of the stock. If we used these dividends to calculate returns, we would get
unreasonably high returns on the day of the dividend payment. As these dividends are
usually a fraction of usual dividends it is concluded that a decimal error occurred.

Monthly returns are calculated using the return index. For transforming other vari-
ables to monthly frequency either last available value for a given month is used or sum
over the month in case of volume traded. We compare Return index provided by Datas-
tream with returns that we calculate using price and dividend. If the difference between
Datastream returns and returns we constructed is larger than 0.5 in absolute terms, we set
returns to missing. We compare market value reported by Datastream with a self-created
market value that we calculate by multiplying unadjusted price with the number of shares
outstanding. If the difference between those two numbers is greater than 0.5 in absolute
terms, we set the market value to missing. Monthly returns higher than 2000% are dis-
carded. If Ry or Ry—; is higher than 300% and (1 + R;)(1 + R;—1) — 1 is less than 50%,
then both returns are set to missing. Monthly returns before the year 2000 are winsorized
in each region as a way to limit outliers. Data below the first percentile are set to first
percentile value and data above 99th percentile are set to 99th percentile value.

C.3 Investment universe - liquidity filter

As our investment universe we have a sample of 23 developed countries: Australia, Austria,
Belgium, Denmark, Finland, France, Germany, Greece, Hong Kong, Ireland, Italy, Japan,
Luxembourg, the Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden,
Switzerland, the United Kingdom, and the United States. These countries are sorted into
four regions: U.S., Europe, Japan and Asia Pacific regions.

We apply a liquidity filter allowing us to avoid micro-caps stocks which are highly
illiquid and trading would be costly or even impossible (i.e. shorting some firms). We sort
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firms based on market capitalization and then exclude a portion of low market capital-
ization firms each month. In each region, we exclude the least capitalized firms, so that
the sum of the market capitalization of those firms is 5% of total market capitalization for
that region.

We also employ a similar filter that is based on trading volume over the last 12 months.
We exclude low traded firms so that the sum of their trading volume makes 5% of the
total traded volume of the given region. In case trading volume is missing for a firm, we
exclude this firm if it belongs to the lowest 10% based on market capitalization.

For stocks that are not in the U.S., we also require that they have market capitalization
larger than the lowest decile NYSE market cap for a given month. This filtering is to ensure
that non-U.S. firms have capitalization comparable to the U.S. stocks.

Additionally, the firms need to have price larger than one dollar, in the case of Asia
Pacific region $0.1, at the end of the previous month.

In Table C.1 are reported descriptive statistics for preprocessed and filtered universe.
Summary statistics for monthly returns, market capitalization, and the number of firms at
the end of the month are presented separately for U.S. and international (excluding U.S.)
datasets. Average monthly return in the U.S. is two times higher than in the international
sample. U.S. dataset has, on average, 1100 firms at the end of the month. Including
international dataset provides, on average, additional 1870 firms per month.

Table C.1: Descriptive statistics

r corresponds to monthly returns and is in percentages, M C stands for market capitalization (in millions of
dollars) and the number of firms in the cross-section each month are reported for the U.S. and international
sample (with the U.S. excluded). The period from 1963 to 2018 for the U.S. and 1980 to 2018 internationally
is covered.

US International

r MC Number of firms r MC Number of firms
Mean 0.94 6107.76 1100.11 0.42 6414.29 1871.55
Std 11.38 22937.00 249.45 11.58  16081.87 281.34
Min -100.00 27.05 647.00 -99.97 52.00 1297.00
25% -4.81 348.35 947.00 -5.51 828.54 1661.00
50% 0.75 1156.27 1042.50 0.16 1936.31 1911.50
75% 6.47 3763.79 1250.50 5.96 5205.55 2061.75
Max 300.17 1099436.06 1734.00 1301.01 563055.56 2347.00

D Robustness - Gradient boosted regression trees

As a robustness check, we use gradient boosted regression trees!'! instead of feedforward
neural networks. Sample splitting is the same as with neural networks. We use a hyper-
parameter search to select optimal parameters that perform well out of sample. For the

11. See subsection B.1 for more details
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optimal number of trees, we test 50, 100, 200, 300, 400, and 500. Maximum depth of each
tree between one and nine is considered and learning rates 0.01, 0.025, 0.05, and 0.1.

We obtain predictions of cumulative returns at various horizons using gradient boosted
regression trees on the U.S. sample.

We constructed portfolios in the same way as with neural networks. Results of long-
short decile portfolios at various horizons, with holding period is equal to forecasting
horizon used, are presented in Table D.1. Results for one-month horizon have comparable
Sharpe ratio to neural networks, but it is slightly more volatile. Looking at longer horizons,
the two-month portfolio has a higher Sharpe ratio after accounting for transaction costs,
benefiting from the reduced turnover of the strategy. The short leg of portfolios is not
profitable with transaction costs, similar to neural networks portfolios in the U.S. However,
in this case, a long-only component is more profitable and has a higher Sharpe ratio
than long-short strategy. Short only component seems ineffective in this case. More
performance metrics for portfolios are in Table D.2. Betas of portfolios are around -0.40
almost double that of neural networks. In Figure D.1 are cumulative returns of long-
short decile portfolios. Without transaction costs one-month, then two-month portfolios
dominate. When we account for transaction costs, two-month portfolio is better.

Without transaction costs With transaction costs
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Figure D.1: Cumulative returns of long-short decile portfolios in the U.S.

The figure shows cumulative returns of long-short decile portfolios without and with transaction costs on
the U.S. sample. The portfolio label is the forecasting horizon in months and holding period of the strategy.
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Table D.1: Performance of long-short decile portfolios in the U.S.

The table shows the performance of long-short decile portfolios in the U.S. for the period between 1995
to 2018. Monthly mean returns, standard deviation, Sharpe ratio and maximum drawdown for strategies
labelled 1 to 24 are reported. The label corresponds to the horizon h for which we obtain the predictions
and at the same time the holding period for a given portfolio. In Panel A are results of the long-short
portfolio. The results are decomposed into long and short components in Panel B, and Panel C. The
displayed values are in percentages except for the Sharpe ratio.

Without transaction costs With transaction costs

Mean Std Sharpe MDD  Mean Std Sharpe MDD Turnover

Panel A: Long-short portfolio

1 1.84 5.59 1.14  -47.63 1.23 548 0.78 -49.68 121.56
2 1.75 5.67 1.07 -41.85 1.44 5.63 0.89 -42.98 59.46
3 1.14 5.19 0.76 -39.71 0.93 5.17 0.62 -40.62 40.77
4 1.15 5.44 0.73 -38.67 0.98 5.43 0.63 -43.32 32.35
5 1.01 5.34 0.65 -46.94 0.87 5.32 0.57 -50.32 26.84
6 0.90 4.99 0.63 -52.73 0.79 4.98 0.55 -55.25 23.13
9 0.98 4.09 0.83 -45.34 0.90 4.07 0.76 -47.43 16.69
12 098 4.36 0.78 -63.57 0.92 4.36 0.73 -64.64 12.62
24 0.8 4.74 0.63 -67.57 0.83 4.75 0.61 -68.14 6.14

Panel B: Long only component of the strategy

1 1.78 6.13 1.00 -54.38 1.48 6.10 0.84 -54.91 121.22
2 1.68 6.08 0.95 -52.37 1.53 6.06 0.87 -52.69 59.12
3 1.32 5.53 0.83 -52.41 1.22  5.52 0.76 -52.84 40.30
4 1.26 5.28 0.83 -53.69 1.18 5.27 0.78 -53.97 32.00
5 1.21 5.56 0.75  -59.39 1.14 5.56 0.71 -59.59 26.52
6 1.18 5.38 0.76  -54.92 1.13 5.38 0.73 -55.12 22.60
9 1.22 5.61 0.76 -55.82 1.19 5.60 0.73 -55.90 16.18
12 1.23 5.69 0.75 -54.12 1.20 5.69 0.73 -54.23 12.02
24 1.20 5.47 0.76 -50.79 1.18 5.47 0.75 -50.85 5.84
Panel C: Short only component of the strategy
1 0.07 7.98 0.03 -84.96 -0.28 7.92 -0.12 -85.96 121.81
2 0.06 8.04 0.03 -82.67 -0.12 8.02 -0.05 -83.31 59.61
3 -0.20 8.25 -0.08 -83.78 -0.32 8.24 -0.14 -84.71 41.12
4 -0.13  8.39 -0.06 -82.93  -0.22 8.38 -0.09 -83.74 32.58
5 -0.21 8.38 -0.09 -83.68 -0.29 8.37 -0.12 -84.31 27.06
6 -0.30  8.27 -0.12 -85.54  -0.36 8.27 -0.15 -86.02 23.55
9 -0.24 8.14 -0.10 -82.30 -0.29 8.14 -0.13 -82.72 17.13
12 -0.27 7.99 -0.12 -80.40 -0.31 7.99 -0.13  -82.28 13.18
24 -0.39 7.52 -0.18 -85.69  -0.41 7.52 -0.19 -86.36 6.47
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Table D.2: Performance measures of long-short decile portfolios in the U.S.

Sortino ratio, conditional value at risk at 99%, Alpha and Beta (in comparison with U.S. market returns)
are reported for long-short decile portfolios for the period between 1995 and 2018. Portfolio label is the
forecasting horizon and the holding period for the portfolio.

Without transaction costs With transaction costs

Sortino CVaR 99% Alpha Beta Sortino CVaR 99% Alpha Beta
1 2.19 -10.53 2.12  -0.37 1.35 -11.10 1.50 -0.37
2 1.93 -11.71 2.04 -0.39 1.53 -12.13 1.73 -0.39
3 1.27 -11.55 1.48 -0.47 1.00 -11.82 1.27 -0.47
4 1.27 -11.53 1.54 -0.54 1.06 -11.74 1.38 -0.54
5 1.08 -12.10 1.35 -0.47 0.92 -12.29 1.22 -0.47
6 0.98 -12.04 1.25 -0.47 0.84 -12.22 1.13 -0.47
9 1.35 -9.02 1.23 -0.34 1.22 -9.17 1.15 -0.34
12 1.18 -10.01 1.18 -0.28 1.09 -10.14 1.12 -0.28
24 0.93 -10.95 0.98 -0.17 0.90 -11.03 0.95 -0.17

Double-sorted portfolios were made with cutoffs of top 15% and bottom 15%. In
Table D.3 is shown the performance of double-sorted long-short portfolios. Portfolio 1-2
has slightly higher Sharpe ratio than one-month decile portfolio. Double-sorted portfolios
have higher mean returns. Cumulative returns of double-sorted long-short portfolios in
comparison with one-month long-short decile portfolio are in Figure D.2. Additional
performance metrics are in Table D.4. Betas are more negative than in the case of decile
portfolios.

Table D.3: Double-sorted portfolios performance in the U.S.

The table shows the profitability of a double-sorted long-short portfolio in the U.S. between 1995 and 2018.
Portfolio labels (1-2 to 1-24) show which two horizon predictions were used in double sorting. Results are
shown with and without transaction costs. Monthly mean returns, standard deviation, Sharpe ratio and
maximum drawdown are reported. Reported values are in percentages with the exception of the Sharpe
ratio.

Without transaction costs With transaction costs
Mean Std Sharpe MDD  Mean Std Sharpe MDD Turnover

1-2 2.05 6.17 1.15 -42.60 1.46 6.05 0.84 -43.44 116.60
1-3 1.93 6.11 1.10 -48.97 1.34 6.00 0.78 -50.85 114.60
1-6 1.72  6.35 0.94 -56.98 1.13 6.24 0.63 -58.65 114.89
1-9
1-1

1

1.92 6.40 1.04 -55.77 1.34 6.28 0.74 -57.51 116.45
2 2.04 6.04 1.17 -40.56 1.44  5.93 0.84 -42.87 118.54
-24 1.97 6.47 1.06 -53.40 1.35 6.41 0.73 -63.92 122.07
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Table D.4: Double-sorted portfolios performance metrics - in the U.S.

Sortino ratio, conditional value at risk at 99%, Alpha and Beta (with regards to market returns in the
U.S.) are presented for long-short double-sorting portfolios for the period between 1995 and 2018. Portfolio
labels are the two forecasting horizons which were used in double sorting.

Without transaction costs

With transaction costs

Sortino CVaR 99% Alpha Beta Sortino CVaR 99% Alpha Beta
1-2 2.23 -11.99 2.38 -0.46 1.49 -12.62 1.79 -0.45
1-3 2.03 -12.43 2.31 -0.52 1.32 -13.05 1.72 -0.52
1-6 1.62 -13.65 2.14 -0.57 1.00 -14.30 1.55 -0.57
1-9 1.83 -13.51 2.35 -0.58 1.20 -14.18 1.76 -0.58
1-12 2.19 -11.91 2.43 -0.53 1.42 -12.76 1.82 -0.53
1-24 1.75 -13.20 2.26 -0.41 1.10 -14.40 1.63 -0.41

Performance of long-short buy/hold spread of 10%/20% is presented in Table D.5.
Portfolio 2-1 has the highest Sharpe ratio and mean, higher than one-month decile port-
folio. Additional metrics for these portfolios are in Table D.6. Cumulative returns of
buy/hold spread portfolios are in Figure D.3. Portfolio 2-1 outperforms the benchmark
model (one-month long-short decile portfolio).

Table D.5: Buy/hold spread portfolio performance in the U.S.

The profitability of long-short buy/hold spread portfolios in the U.S. for 1995 to 2018 period. We use
a buy/hold spread 10%/20% and report the results both without transaction costs and with transaction
costs. Buy and hold column show which horizons were used in the portfolio creation. Monthly mean
returns, standard deviation, Sharpe ratio and maximum drawdown are reported. All values are reported
in percentages except for the Sharpe ratio.

Without transaction costs

With transaction costs

Mean Std Sharpe MDD Mean Std Sharpe MDD Turnover
buy hold
1 1 1.69 5.49 1.07 -44.34 1.24 543 0.79 -45.85 84.51
2 1 1.84 5.85 1.09 -42.53 1.43 5.77 0.86 -43.95 71.74
3 1 1.53 5.88 0.90 -45.65 1.15 5.82 0.69 -46.88 63.39
4 1 1.54 6.06 0.88 -46.21 1.18 6.01 0.68 -47.36 61.13
5 1 1.47 5.95 0.86 -44.82 1.12  5.90 0.66 -46.00 57.91
6 1 1.31 5.55 0.82 -43.94 0.97 5.50 0.61 -45.27 55.23
9 1 1.33 5.49 0.84 -41.09 1.02 5.45 0.65 -42.56 51.59
12 1 1.42 541 0.91 -46.73 1.13 5.36 0.73 -53.80 50.97
24 1 1.36 5.81 0.81 -57.34 1.07 5.80 0.64 -63.66 48.51
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Figure D.2: Cumulative returns of long-short double sorting portfolios in the U.S.

The figure shows cumulative returns on a logarithmic scale of the double-sorting strategy and of long-
short decile portfolio at horizon one in the U.S. The two numbers correspond to horizons on which we
double-sorted. The holding period is one month.
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Figure D.3: Cumulative returns of buy/hold spread portfolios in the U.S.

Cumulative returns of long-short buy/hold spread portfolios compared with the benchmark model. We
use buy/hold spread 10%/20%. Portfolio label signifies horizon based on which we buy and hold stocks,
respectively.
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Table D.6: Buy/hold spread portfolio performance metrics - U.S. sample

Sortino ratio, conditional value at risk at 99%, Alpha and Beta (in comparison with U.S. market returns)
are reported for long-short buy and holds spread for the period between 1995 and 2018. We use 10%/20%
buy/hold spread cutoffs. Portfolio label signifies horizon based on which we buy and horizon based on
which we hold stocks respectively.

Without transaction costs

With transaction costs

Sortino CVaR 99% Alpha Beta Sortino CVaR 99% Alpha Beta
buy hold
1 1 2.07 -10.31 1.93 -0.32 1.42 -10.81 1.48 -0.32
2 1 2.10 -11.13 2.13 -0.40 1.55 -11.57 1.72  -0.40
3 1 1.58 -11.92 1.88 -0.48 1.14 -12.47 1.51 -0.48
4 1 1.54 -12.69 1.97 -0.58 1.13 -13.23 1.60 -0.58
5 1 1.48 -12.62 1.88 -0.56 1.08 -13.20 1.53 -0.55
6 1 1.39 -11.74 1.71 -0.54 0.99 -12.20 1.37 -0.54
9 1 1.44 -11.54 1.71  -0.52 1.06 -11.93 1.40 -0.51
12 1 1.61 -11.30 1.77 -0.48 1.22 -11.79 1.47 -0.47
24 1 1.40 -12.24 1.57 -0.31 1.04 -12.85 1.28 -0.31
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