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Abstract: 
This paper studies predictability of realized volatility of U.S. Treasury futures using 
high-frequency data for 2-year, 5-year, 10-year and 30-year tenors from 2006 to 
2017. We extend heterogeneous autoregressive model by Corsi (2009) by higher-
order realized moments and allow all model coefficients to be time-varying in order 
to explore dynamics in forecasting power of individual predictors across the term 
structure. We find realized kurtosis to be valuable predictor across the term 
structure with robust contribution also in out-of-sample analysis for the shorter 
tenors. Time-varying coefficient models are found to bring significant out-of-sample 
forecasting accuracy gain at the short end of the term structure. Further, we detect 
significant asymmetry in forecasting errors present for all the tenors as the constant-
coefficient models were found to generate systemic under-predictions of future 
realized volatility. 
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1. Introduction

Sovereign bonds are a traditional counterpart of stocks in investors’ port-

folios. Average daily trading volume of U.S. Treasury securities since 2009

has been double as compared to U.S. equities based on data published by Se-

curities Industry and Financial Markets Association (SIFMA)1 making the

U.S. bond market one of the world’s largest financial markets. Moreover,

sovereign yields serve as a basis for pricing of other securities and deriva-

tives as well as commercial loans which further strengthens the impact of the

sovereign bond market on capital allocation in general. Forecasting bond re-

turn volatility is fundamental in terms of portfolio optimization, asset pricing

and risk management but in contrast to equity markets empirical literature

dealing with this topic is very scarce.

We believe that sovereign bonds represent very different investment propo-

sition as compared to equities and even within the term structure there may

be significant differences in context of volatility forecasting since short-term

and long-term tenors are perceived as very different assets. The main con-

tribution of this paper is threefold. First, we explore differences in pre-

dictability of volatility using multiple variations of HAR model across the

entire term structure ranging from 2-year to 30-year maturity. Availabil-

ity of high-frequency data allowed for significant improvement of volatility

modeling and forecasting using methods relying on realized measures. In

terms of forecasting, heterogeneous autoregressive model of realized volatil-

ity (HAR) by Corsi (2009) based on long memory feature of volatility has

1Data on average daily volumes available at https://www.sifma.org/resources/archive/research/statistics/
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gained popularity thanks to its simplicity and sound forecasting performance.

From the limited bond volatility literature, relevant studies include Andersen

et al. (2007) or Busch et al. (2011) who, among other asset classes, inspected

volatility of 30-year bonds. More compact view on bond market across vari-

ous tenors was provided by Balduzzi et al. (2001) and on high-frequency level

by Cieslak and Povala (2016) who performed a detailed analysis of realized

volatility term structure. Recently, Özbekler et al. (2020) inspected HAR

model including jumps and effect of monetary announcement on European

sovereign bond market volatility.

Second, we examine informational content of additional explanatory vari-

ables and variation of their relevance across the term structure. In addition

to variables which have demonstrated certain prediction power on bond mar-

kets in previous studies, we include higher-order realized moments, namely

realized skewness and kurtosis. Recent surge of empirical literature inspect-

ing value of higher-order moments on subsequent (mainly equity) returns

emerged following the empirical work by Amaya et al. (2015) who found

realized skewness to carry a significant power for predicting cross-section

of equity returns. In context of volatility forecasting, higher-order realized

moments are candidates for observable metrics of asymmetry or extremes

resembling disaster events claimed to have substantial impact on price move-

ments by number of theoretical studies (e.g. Kraus and Litzenberger (1976),

Barro (2006)). Their value for volatility forecasting was reported by Mei

et al. (2017) who found realized skewness to improve mid-term and long-term

volatility forecasts of a Chinese equity index prices, Gkillas et al. (2019) who

analyzed exchange-rate volatility or Demirer et al. (2019) who found realized
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skewness to be relevant for future gold price volatility.

Third, in addition to detecting differences in bond market volatility fore-

casting for various tenors we aim to explore whether (and how) the relation-

ships evolve over time. We advance the complex analysis across entire term

structure outlined above to fully dynamic environment using time-varying

coefficients methodology (TVC) as recently introduced by Chen et al. (2018)

who allowed all HAR model coefficients to be time-varying and found the

TVC model to outperform the constant-coefficient benchmark especially in

crisis period with unduly high volatility and in longer forecasting horizons.

Other works examining the HAR model in dynamic environment on stock

markets include Bollerslev et al. (2016) or Bekierman and Manner (2018)

who advanced the constant-coefficient HAR model to a model time-varying

in the autoregressive coefficient, Wu and Hou (2019) who replaced the au-

toregressive parameter by positive and negative semi-variance or Zhu et al.

(2020) who included also a jump component. Our ambition is to demonstrate

how the time-varying volatility forecasting models perform out-of-sample as

compared to the static counterparts, how the potential accuracy gain varies

for individual tenors and whether the models generate any systemic under-

or over-predictions.

The remainder of this papers is organized as follows. Section 2 explains

applied methodology, section 3 provides with detailed dataset description,

section 4 summarizes in-sample estimation results comparing various model

specifications both in static and dynamic forms, section 5 evaluates out-of-

sample forecasting performance of all models and section 6 concludes.
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2. Methodology

2.1. Realized moments

Thanks to availability of high-frequency data, we can observe stronger

presence of model-free data-driven volatility measurements to the detriment

of parametric models relying on strict assumptions in order to to capture

the latency of volatility including GARCH (Bollerslev, 1986) or stochastic

volatility (SV) models (Taylor, 1986), or alternatively, option-based implied

volatility measures. As Andersen and Bollerslev (1998) or Andersen et al.

(2003) show, realized volatility measures based on intra-day data bring sig-

nificant reduction in noise and improve stability of the results as compared to

the measures relying on daily return observations. We use realized variance

measure as introduced by Andersen and Bollerslev (1998):

RVt =
N∑
i=1

r2
t,i (1)

where rt,i generally represents the i−th log-return on trading day t, N is

the number of equispaced returns on the respective trading day. Intraday

return is defined as rt,i = (pt,i− pt,i−1)× 100 where pt,i refers to logarithm of

a intra-day price on day t. We note terms (realized) variance and (realized)

volatility may be used interchangeably in the further text.

In additon to variance, higher moments embed information about occur-

rence of extreme events or asymmetry and can be associated with concepts

such as tail risk (Bollerslev et al., 2015) or disaster risk (Kozhan et al., 2013).

Thanks to availability of high-frequency data, we use realized skewness mea-

sure which was first introduced by Neuberger (2012). as constructed by
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Amaya et al. (2015):

RSKt =

√
N
∑N

i=1(rt,i)
3

RV
3/2
t

(2)

where rt,i generally represents the i−th log-return on trading day t, N is the

number of equispaced returns on the respective trading day and RVt refers

to realized variance as outlined above.

Similarly, in construction of realized kurtosis we follow Amaya et al.

(2015):

RKUt =
N
∑N

i=1(rt,i)
4

RV 2
t

(3)

where rt,i generally represents the i−th log-return on trading day t, N is the

number of equispaced returns on the respective trading day and RVt refers

to realized variance as outlined above.

2.2. Extended HAR model

The basic building block of the analysis is the well-known HAR model by

Corsi (2009). We define the initial model which serves also as a benchmark

model to our further extensions introduced below as follows:

logRVt = β0 + β1 logRVt−1 + β2 logRVw,t−1 + β3 logRVm,t−1 + εt (4)

where logRVw,t represents logRVt:t−5 and logRVm,t represents logRVt:t−21

defined as logRVt:t−j = 1
j

∑j
k=0 logRVt−k and RV refers to realized variance

as defined above. The autoregressive elements is also referred to as logRVd.

We extend the basic model by two groups of additional explanatory vari-

ables. Similarly to Mei et al. (2017) or Gkillas et al. (2019) following up on

the recent surge of literature focusing on realized moments, we include first
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lags of realized skewness (differenced) and kurtosis and construct HAR-M

(moments) model:

logRVt = β0 + β1 logRVt−1 + β2 logRVw,t−1+

+β3 logRVm,t−1 + γ1∆RSKt−1 + γ2RKUt−1 + εt

(5)

Second, we include additional control variables which shall from its nature be

useful in explaining future volatility on bond markets such as Federal Funds

rate as proxy for a risk-free rate, VIX volatility index or economic policy

uncertainty index. For now, we label vector of these variables as Ct−1 and

provide with detailed description in Section 3. HAR-C (controls) model is

expressed as:

logRVt = β0 + β1 logRVd,t−1 + β2 logRVw,t−1+

+β3 logRVm,t−1 + Ct−1δ + εt

(6)

Final extension is called HAR-CM model and represents a combination of

HAR-C and HAR-M models in order to reveal additional explanatory power

of realized moments which has not been captured by the control variables:

logRVt = β0 + β1 logRVd,t−1 + β2 logRVw,t−1+

+β3 logRVm,t−1 + γ1∆RSKt−1 + γ2RKUt−1 + Ct−1δ + εt + εt

(7)

2.3. Time-varying coefficients model

One of the ambitions of this paper is to explore whether assumption of

constant coefficients in the models described above is appropriate or whether
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allowing dynamics of these coefficients can improve in-sample and out-of-

sample performance as compared to the benchmark static HAR model.

Having an extensive data set covering 12 years in hand, we have a solid

base for exploration of the dynamics between the variables. Since fully non-

parametric models which do not require any assumptions on the relationships

between the variables do not often provide with a straightforward inference,

semi-parametric models where the coefficients change over time in a specified

manner allow for more flexibility than parametric linear model without the

drawbacks of the fully non-parametric methods.

Before turning to concrete time-varying model specifications, we would

like to highlight main features of TVC models generally expressed as:

yt = xᵀtβ(zt) + ut, t = 1, ..., T (8)

where yt is the dependent variable, xt is the vector of independent vari-

ables, and ut is the disturbance term with E(ut|xt) = 0 and E(u2
t |xt) = σ2.

As compared to the constant-coefficient linear model, β(zt) represent the re-

gression coefficients being the unknown functions of time (linear constant

method) or of a random variable changing with time (local linear method).

Pioneering work of the former was Robinson (1989) and Hastie and Tibshi-

rani (1993) for the latter who analysed the time-varying parameter linear

models using stationary variables2. Recently, the fully time-varying coeffi-

cient methodology was applied by Chen et al. (2018) who forecasted volatility

2We refer to Casas and Fernandez-Casal (2019) for a comprehensive literature review

on time-varying coefficients methodology.
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of S&P500 returns.

Assuming β(·) to be twice differentiable, Taylor-rule-approximation around

z is expressed by β(zt) = β(z)+β(z)(1)(zt−z). Combining OLS and local lin-

ear kernel method (Fan and Gijbels, 1996) solves the following minimization

problem:

(β̂(zt), β̂
(1)(zt)) = arg min

θ0,θ1

T∑
t=1

[yt − xᵀt θ0 − (zt − z)xᵀt θ1]2Kb(zt − z) (9)

where the kernel Kb(zt − z) = 1
b
K( zt−z

b
) weights the local regressions within

a chosen bandwith b.We refer to Chen et al. (2018) for detailed explanation

of the theoretical framework of the local linear TVC method as also applied

in our paper.

We use the above presented TVC with local linear kernel methodology

for estimation of models presented in Section 2.2 allowing all coefficients to

be time-varying. The respective models are labeled as TVHAR, TVHAR-M,

TVHAR-C and TVHAR-CM, respectively.

3. Data

For construction of realized measures, we use 1-minute U.S. Treasury

futures data (active contracts) from Tick Data database for each tenor traded

at CME Globex platform under tickers TU (2-year tenor), FV (5-year tenor),

TY (10-year tenor) and US (30-year tenor).

Apart from crucial benefit for a data-driven methodology of having clean

and reliable high-frequency data from a renowned database, there are other

advantages of analyzing front contract futures data instead of cash market.

First, U.S. Treasury futures market, with futures prices are tightly linked to
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underlying bond prices (and yields), has been gaining relative importance to

the detriment of the cash market.3 Moreover, also due to lower transaction

costs, futures market was detected to be dominant to cash market in reaction

to news and price discovery process (Andersen et al., 2007).

Our sample period covers futures price data from January 3, 2006 to

December 5, 2017. We exclude weekends, public holidays and other days with

no trading activity (i.e. days with a single unique price) resulting in 3,066

days included in the sample. On each day we take into account observations

between 5:20 a.m. to 4:00 p.m. CT including also usual times of publication

of annoucements of Federal Reserve System closely followed by fixed income

investors.4

In line with consensus in the literature, we sample the datapoints accord-

ing to 5-minute interval to achieve the optimal trade-off between sufficiently

high frequency and lowest possible bias due to microstructure noise (Hansen

and Lunde, 2006). Final dataset containing 395,514 price observations for

each tenor is used to construct measures of realized volatility, realized skew-

ness and realized kurtosis as defined in Section 2.1.

Figure 1 shows mean monthly volatility (corresponding the the RVt:t−21

components of the HAR model) for our four tenors included in our analysis.

Unsurprisingly, we find the period of global financial crisis to be the most

3See “The New Treasury Market Paradigm”, CME Group, June 2016, available at

https://www.cmegroup.com/education/files/new-treasury-market-paradigm.pdf.
4Thanks to electronic platform CME Globex, trading activity occurs also outside CME

trading hours (07:20 - 14:00 CT). Therefore, we extend the trading day by additional 4

hours to capture significant trading activity.
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turbulent period in our sample. Importantly, development of volatility shows

similar patters across all maturities. However, we have a clear evidence of

volatility term structure to be upward-sloping. As discussed in Malinska

(2020), in addition to classical duration-related topics, increased volatility

for longer tenors could be explained by different drivers of investor sentiment

on short and long ends of the term structure. Since short-maturity securi-

ties tend to follow monetary policy news (which shall be relatively stable or

predictable), longer maturities embed rather general sentiment of economic

development. This is also our motivation to include variables capturing these

dynamics and mood on the market into our volatility forecasting models.

Figure 1: Mean monthly realized variance. Note: Monthly realized variance calculated as

average from preceding 22 days.

Figure 2 contains plots of realized variance, skewness and kurtosis for the

10-year tenor as an example. Over the sample period, mean values of realized

variance, skewness and kurtosis were 1.6e-05, -0.057 and 15.77, respectively
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whereas median values were 9.4e-06, -0.018 and 8.29, respectively. We remind

that we use realized variance in logarithm and realized skewness in first-

difference in our models. Detailed descriptive statistics of variables as applied

in further estimation for all tenors is summarized in Table 1.

(a) Realized variance (b) Realized skewness (c) Realized kurtosis

Figure 2: Realized moments of 10-year futures returns (TY)

We include several control variables capturing mood and expectations

on the market which we believe capture information likely to be taken by

bond investors into account or which were found to be valauble in volatility

forecasting in existing literature. As a basis, we include a 3-month con-

stant maturity Treasury bill rate5 widely perceived as a risk-free rate of the

U.S. money market embedding also expectations on monetary policy change.

Risk-free rate is applied in first-difference in our models. Further, as com-

pared to Chao (2016) who include 15 economic variables when forecasting

bond volatility in monthly frequency, we strive to find few index variables

5Board of Governors of the Federal Reserve System (US), 3-Month Treasury Constant

Maturity Rate [DGS3MO], retrieved from FRED, Federal Reserve Bank of St. Louis;

https://fred.stlouisfed.org/series/DGS3MO, April 11, 2021.
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providing with a complex description of market situation, investor sentiment

and future expectations of those in order to limit dimensionality of the model

having a rather computationally-demanding procedure of TVC estimation

ahead.

(a) Risk-free rate (b) EPU (c) VIX

Figure 3: Bond market control variables

We also include Economic Policy Uncertainty index (EPU) for U.S. mar-

ket introduced by Baker et al. (2016) which was used in multiple works

dedicated to volatility forecasting (e.g. Gkillas et al. (2019)). The index is

constructed based on newspaper coverage related to economic policy uncer-

tainty, expiration schedule of U.S. tax provisions and discrepancies among

economic forecasts.6

Since investors often optimize their portfolios balancing exposure to stocks

and bonds, we believe that an indicator giving information on expectations on

future stock market volatility might have a valuable content also for sovereign

bond futures volatility forecasting. Therefore, we include differenced CBOE

6More details on index construction as well as actual data series available at

https://www.policyuncertainty.com/.
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Volatility Index (VIX) derived from near-term options prices of S&P 500

index which is closely followed by market participants as a key indicator of

”fear” on the stock market globally.

Table 1 sets forth a statistical summary of the variables described above in

functional forms as applied in the actual models. Importantly, test statistics

of the augmented Dickey-Fuller test indicate rejection of null hypothesis of

unit root presence in all variables. Further we report Q statistics of Ljung-

Box test of serial correlation of up to 22 lags indicating persistence in all the

series.

Table 2 sets forth a correlation analysis of all explanatory variables (weekly

and monthly means of logRV are omitted). Correlation of logarithm of re-

alized variance with differenced realized skewness is very close to zero across

all maturities. Realized skewness shows positive slightly positive correlation

with logRV for the shortest maturity, while the remaining tenors report low

but negative correlation. Correlation of variance with changed in risk-free

rate is negative and relatively stable for all tenors. Correlation of economic

policy uncertainty index and variance is decent and significantly stronger for

the long-term maturities (being 10-year and 30-year tenors) as compared to

short- and mid-term maturities. On the contrary, changes of VIX index do

not seem much correlated with log realized variance for any maturity.

Further, we demonstrate that looking even at basic components of the

HAR model, there is a reasonable suspicion that relative importance of daily,

weekly or monthly means for next day’s realized variance probably vary over

time. Figure 4 provides with plots of 250-day rolling correlations between

14



log RV TU FV TY US

Mean -14.308 -12.444 -11.487 -10.327

Median -14.539 -12.532 -11.586 -10.373

Std. dev 0.933 0.959 0.849 0.743

Min. -16.914 -15.554 -14.155 -13.035

Max. -9.769 -7.857 -7.354 -4.705

ADF test -3.997*** -4.944*** -5.168*** -5.243***

Ljung-Box (22) 2.804e04*** 1.785e04*** 1.454e04*** 1.197e04***

∆RSK TU FV TY US

Mean -0.002 -0.002 -0.002 -0.001

Median -0.037 -0.036 0.006 0.067

Std. dev 3.040 3.942 3.804 3.361

Min. -14.122 -15.974 -15.874 -14.047

Max. 14.244 16.623 17.821 16.933

ADF test -24.308*** -24.699*** -25.069*** -25.494***

Ljung-Box (22) 7.894e02*** 7.835e02*** 7.964e02*** 7.964e02***

RKU TU FV TY US

Mean 11.421 16.624 15.772 13.515

Median 5.206 8.645 8.289 7.114

Std. dev 16.315 19.364 18.480 16.177

Min. 1.985 2.436 2.407 2.390

Max. 127.121 128.041 127.346 127.836

ADF test -10.511*** -13.443*** -13.714*** -12.863***

Ljung-Box (22) 1.580e02*** 6.768e01*** 5.855e01*** 1.001e02***

Controls ∆RF EPU ∆VIX

Mean -0.001 104.190 0.000

Median 0.000 87.420 -0.055

Std. dev 0.052 67.449 1.816

Min. -0.810 3.320 -17.360

Max. 0.760 626.030 16.540

ADF test -15.057*** -5.507*** -15.800***

Ljung-Box (22) 4.130e02*** 1.633e04*** 1.407e02***

*** indicates p-value below 1%.

Table 1: Descriptive statistics
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logRV ∆RSK RKU ∆RF EPU ∆V IX

TU logRV 1.00 0.01 0.12 -0.11 0.08 0.05

∆RSK 0.01 1.00 -0.12 -0.08 -0.01 0.15

RKU 0.12 -0.12 1.00 -0.01 -0.02 0.00

∆RF -0.11 -0.08 -0.01 1.00 -0.03 -0.13

EPU 0.08 -0.01 -0.02 -0.03 1.00 -0.03

∆V IX 0.05 0.15 0.00 -0.13 -0.03 1.00

FV logRV 1.00 0.00 -0.04 -0.10 0.15 0.05

∆RSK 0.00 1.00 -0.06 -0.07 -0.01 0.18

RKU -0.04 -0.06 1.00 0.01 0.02 0.01

TY logRV 1.00 0.01 -0.04 -0.10 0.39 0.05

∆RSK 0.01 1.00 -0.08 -0.07 0.00 0.16

RKU -0.04 -0.08 1.00 0.00 -0.01 0.01

US logRV 1.00 0.01 -0.02 -0.08 0.29 0.05

∆RSK 0.01 1.00 -0.07 -0.06 -0.01 0.17

RKU -0.02 -0.07 1.00 0.00 0.03 0.01

Table 2: Correlation matrix of explanatory variables (mutual correlations of control vari-

ables displayed in the TU section only)

logRV and logRVt−1, logRVt−1:t−6 and logRVt−1:t−22 for the 10-year tenor.

(a) 1 day: logRVt−1 (b) 1 week: logRVt−1:t−6 (c) 1 month: logRVt−1:t−22

Figure 4: 250-day rolling correlation of logRV with preceding day’s, week’s and month’s

variance (in logarithm) for 10-year tenor

We see that correlation of today’s and yesterday’s variance peaked during

financial crisis (0.6) and since then there is apparent a decreasing trend with

2017 values around 0.2 with local peaks in the periods of U.S. debt crises

or other turbulent periods (such as Fed’s announcement to reduce pace of
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quantitative easing in 2013) with similar trend and pattern also in case of

weekly and monthly means. Therefore, we believe it is worth to explore

time-variation of the coefficients within HAR model and its extensions since

a constant relationship may not be a realistic assumption.

4. Results

4.1. In-sample estimation results

First, we summarize key findings of constant-coefficient HAR model and

its extensions across the term structure (variables were standardized prior

estimation). As expected, in Table 3 we see significant coefficients of all

HAR regressors but the effect of a change of individual elements by one

standard deviation of the HAR model increases (or declines) across the term

structure. The same applies for goodness-of-fit where we see clear downward

trend with increasing maturity.

TU FV TY US

(Intercept) 0.002 0.002 0.005 0.006

(0.011) (0.013) (0.013) (0.014)

logRVd 0.092 ** 0.113 *** 0.133 *** 0.144 ***

(0.028) (0.027) (0.026) (0.027)

logRVw 0.347 *** 0.305 *** 0.277 *** 0.248 ***

(0.067) (0.042) (0.037) (0.034)

logRVm 0.383 *** 0.330 *** 0.309 *** 0.299 ***

(0.058) (0.036) (0.034) (0.034)

R2 63.5% 50.5% 45.6% 41.3%

The number in paranthesis is heteroskedasticity and autocorrelation robust Newey-West stan-

dard error. ***, ** and * denotes siginficance at 0.1%, 1% and 5%, respectively.

Table 3: Estimation results of constant-coefficient HAR model
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Table 4 sets forth estimation result of HAR-M model, i.e. HAR model ex-

tended for realized moments. Here we observe similar outcome for all tenors

since realized skewness is not significant in contrast with realized kurtosis

having negative and significant effect across all maturities with coeffcient

showing an inverted U-shape. It is worth highlighting that inclusion (and

significance) of realized kurtosis had impact on coefficients of lagged logRV

as relative importance of HAR components turn to be more balanced7. Most

significant changes in β̂1 are visible for the 5-year and 10-year tenors for which

also R2 differential as compared to HAR model is the highest. It seems that

capturing of intra-day fluctuations by second and fourth moments is of value

since due to clustering behaviour extremes occurring on one day are likely

to be repeated tomorrow. As a robustness check of information carried by

realized kurtosis, we have included also a jump component. We examined

presence of jumps using approach by Barndorff-Nielsen and Shephard (2006).

The variable refers to BNSJt = (RVt−BPt)× It where BP is bi-power vari-

ation and I is equal to 1 if null hypothesis of no jumps was rejected at 1%

significance level and zero otherwise. We found the jump-related variable to

be significant only in absence of realized kurtosis in the model.

Further, we include multiple control variables and present estimation re-

sults of HAR-CM model in Table 5. As expected, controls having a significant

impact across the entire term structure are risk-free rate and VIX index. The

effect of the former is similar for all maturities, whereas of the latter the ef-

7We estimated the HAR-M model also including weekly and monthly means of realized

kurtosis with negligible impact on coefficients of logRVw or logRVm. Results are available

upon request.
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TU FV TY US

(Intercept) 0.002 0.003 0.005 0.007

(0.011) (0.013) (0.013) (0.014)

logRVd 0.285 *** 0.277 *** 0.282 *** 0.243 ***

(0.039) (0.033) (0.030) (0.029)

logRVw 0.267 *** 0.237 *** 0.215 *** 0.208 ***

(0.056) (0.042) (0.037) (0.034)

logRVm 0.330 *** 0.274 *** 0.261 *** 0.272 ***

(0.054) (0.036) (0.033) (0.031)

∆RSK 0.012 0.002 0.007 0.001

(0.010) (0.013) (0.013) (0.014)

RKU -0.149 *** -0.167 *** -0.166 *** -0.131 ***

(0.018) (0.018) (0.019) (0.017)

R2 64.6% 52.2% 47.4% 42.5%

The number in paranthesis is heteroskedasticity and autocorrelation robust Newey-West stan-

dard error. ***, ** and * denotes siginficance at 0.1%, 1% and 5%, respectively.

Table 4: Estimation results of constant-coefficient HAR-M model

fect strengthens with time to maturity. The remaining control capturing

economic policy uncertainty turns out to be significant for longest maturities

with the largest coefficient in case of the 30-year tenor where we see also the

largest contribution of inclusion of controls to the goodness-of-fit whereas for

other maturities the improvement is much more limited as compared to the

HAR-M model.

Next, we estimate the models using time-varying coefficients methodology

in order to inspect dynamics of the relationships. Plots of the individual

HAR-CM model coefficients for all tenors are presented below together with

90% confidence intervals and constant-coefficient OLS estimates.

On Figure 5 we see that for all maturities there are relatively long periods
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TU FV TY US

(Intercept) 0.002 0.003 0.005 0.006

(0.011) (0.013) (0.013) (0.014)

logRVd 0.266 *** 0.262 *** 0.266 *** 0.226 ***

(0.029) (0.026) (0.025) (0.024)

logRVw 0.273 *** 0.245 *** 0.221 *** 0.212 ***

(0.041) (0.037) (0.036) (0.035)

logRVm 0.337 *** 0.274 *** 0.254 *** 0.260 ***

(0.035) (0.033) (0.031) (0.030)

∆RSK 0.003 -0.008 -0.003 -0.011

(0.011) (0.013) (0.013) (0.014)

RKU -0.143 *** -0.162 *** -0.162 *** -0.128 ***

(0.015) (0.016) (0.016) (0.016)

∆RF -0.042 *** -0.039 ** -0.045 *** -0.041 **

(0.011) (0.013) (0.013) (0.014)

EPU -0.010 0.008 0.033 * 0.052 ***

(0.011) (0.013) (0.014) (0.015)

∆V IX 0.034 ** 0.042 ** 0.045 *** 0.057 ***

(0.011) (0.013) (0.013) (0.014)

R2 64.9% 52.5% 47.9% 43.2%

The number in paranthesis is heteroskedasticity and autocorrelation robust Newey-West stan-

dard error. ***, ** and * denotes siginficance at 0.1%, 1% and 5%, respectively.

Table 5: Estimation results of constant-coefficient HAR-CM model

(exceeding 1 year) where the OLS coefficient is not covered within the confi-

dence interval of the time-varying estimates. In these periods, TVC approach

estimates β̂1 to decrease be below the OLS estimate towards zero.

Coefficient estimates on the weekly variance component plotted on Figure

6 shows OLS estimates to be included in the TVC confidence bands through-

out the period, however we find the confidence intervals to cover zero for the

last 2-3 years of the period. On the other hand, since 2014 the OLS β̂3 turns

out to be well out of the confidence bands.
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(a) β̂1: 2-year (TU) (b) β̂1: 5-year (FV)

(c) β̂1: 10-year (TY) (d) β̂1: 30-year (US)

Figure 5: Time-varying estimates of the coefficient functions β1(·) (black solid line) of

TVHAR-CM model (logRVd variable) with 90% bootstrap confidence interval (grey solid

line) and respective constant-coefficient OLS estimate (grey dashed line)

In case of logRVm presented on Figure 7, we see OLS estimate to overstate

the β3 in time of global financial crisis of 2007-2009 for the 2-year maturity

asset. Other maturities report U-shaped development of the coefficient with

OLS estimate included within the 90% confidence intervals.
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(a) β̂2: 2-year (TU) (b) β̂2: 5-year (FV)

(c) β̂2: 10-year (TY) (d) β̂2: 30-year (US)

Figure 6: Time-varying estimates of the coefficient functions β2(·) (black solid line) of

TVHAR-CM model (logRVw variable) with 90% bootstrap confidence interval (grey solid

line) and respective constant-coefficient OLS estimate (grey dashed line)

Standard OLS estimation results reported no significance of realized skew-

ness (differenced) on next days volatility for all inspected tenors. This is

confirmed by TVC analysis with coeffient functions summarized in Figure 8

except for the shortest 2-year tenor where the 90% confidence band shifts

well above zero starting end of 2015. On the other hand, for the longer-term

tenors, there is evidence of limited (but significant) negative effect around
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(a) β̂3: 2-year (TU) (b) β̂3: 5-year (FV)

(c) β̂3: 10-year (TY) (d) β̂3: 30-year (US)

Figure 7: Time-varying estimates of the coefficient functions β3(·) (black solid line) of

TVHAR-CM model (logRVm variable) with 90% bootstrap confidence interval (grey solid

line) and respective constant-coefficient OLS estimate (grey dashed line)

2007-2008 but it is fair to highlight that the upper limit of the confidence

bands are very close to zero.

Constants-coefficient estimate on realized kurtosis was detected as nega-

tive and significant for all the maturities. However, for all tenors we see the

OLS estimate to lie out of the confidence bands for at least last 2 years (see
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(a) γ̂1: 2-year (TU) (b) γ̂1: 5-year (FV)

(c) γ̂1: 10-year (TY) (d) γ̂1: 30-year (US)

Figure 8: Time-varying estimates of the coefficient functions γ1(·) (black solid line) of

TVHAR-CM model (∆RSK variable) with 90% bootstrap confidence interval (grey solid

line) and respective constant-coefficient OLS estimate (grey dashed line)

Figure 9). Importantly, values of γ̂2 including confidence bands remain well

below zero for the vast majority of the sample period for all maturities.

As presented on Figure 10, development of δ̂1 functions confirms signifi-

cance of changes in risk-free rate detected by the static estimation only in the

period 2007-2009 and since then the width of the confidence bands includes

also zero across all maturities.
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(a) γ̂2: 2-year (TU) (b) γ̂2: 5-year (FV)

(c) γ̂2: 10-year (TY) (d) γ̂2: 30-year (US)

Figure 9: Time-varying estimates of the coefficient functions γ2(·) (black solid line) of

TVHAR-CM model (RKU variable) with 90% bootstrap confidence interval (grey solid

line) and respective constant-coefficient OLS estimate (grey dashed line)

Effect of economic policy uncertainty was detected as significant for the

10-year and 30-year tenors only using standard OLS. Result of time-varying

analysis summarized on Figure 11 provides a sligthly different view. For the

shortest tenor (and to the large extent also for the 5-year tenor), we find

several approximately 1-year windows where confidence bands of EPU effect

is well above zero (around 2008 and 2017) and on the other hand periods with
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(a) δ̂1: 2-year (TU) (b) δ̂1: 5-year (FV)

(c) δ̂1: 10-year (TY) (d) δ̂1: 30-year (US)

Figure 10: Time-varying estimates of the coefficient functions δ1(·) (black solid line) of

TVHAR-CM model (∆RF variable) with 90% bootstrap confidence interval (grey solid

line) and respective constant-coefficient OLS estimate (grey dashed line)

90% probability of δ2 to be negative (around 2013). Periods where economic

policy uncertainty has positive effect on logRV are valid for the 10-year and

30-year tenors as well, but we do not find any evidence of potentially negative

effect in case of these tenors.

The remaining control variable capturing changed in expectations of stock

market volatility (∆V IX) shows relatively stable and similar pattern for

26



(a) δ̂2: 2-year (TU) (b) δ̂2: 5-year (FV)

(c) δ̂2: 10-year (TY) (d) δ̂2: 30-year (US)

Figure 11: Time-varying estimates of the coefficient functions δ2(·) (black solid line) of

TVHAR-CM model (EPU variable) with 90% bootstrap confidence interval (grey solid

line) and respective constant-coefficient OLS estimate (grey dashed line)

all tenors much in line with the OLS estimates being included within the

confidence bands of the time-varying estimates (see Figure 12).

We have examined the in-sample fit Model Confidence Set procedure

(Hansen et al., 2011) (as presented in the following section in more detail)

based mean square error and mean absolute error and we have confirmed

the TVHAR-CM model to provide the best in-sample fit among other model
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(a) δ̂3: 2-year (TU) (b) δ̂3: 5-year (FV)

(c) δ̂3: 10-year (TY) (d) δ̂3: 30-year (US)

Figure 12: Time-varying estimates of the coefficient functions δ3(·) (black solid line) of

TVHAR-CM model (∆V IX variable) with 90% bootstrap confidence interval (grey solid

line) and respective constant-coefficient OLS estimate (grey dashed line)

specifications.8

8Since we focus primarily on the out-of-sample performance, results of MCS procedure

for the in-sample analysis are untabulated and are available upon request. TVHAR-CM

model was the only model included in the 20% set of superior models for all the tenors.
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4.2. Out-of-sample forecasting performance

Whereas we have found the TVHAR-CM model a clear outperformer

in-sample, out-of-sample volatility forecasting is more important for market

practitioners and since HAR model by (Corsi, 2009) is very popular thanks

to its strong out-of-sample performance, beating HAR is a true challenge for

remaining seven model specifications.

We inspect the forecasting performance at various horizons. First, we

generate 1-day (logRVt+1), 5-day (logRVt+6) and 21-day (logRVt+22) ahead

forecasts of volatility on the respective day. Second we also inspect abil-

ity to forecast average volatility in coming week (logRVw,t+1) and month

(logRVm,t+1).

To generate forecasts at various horizons based on constant-coefficient

models, we start with first 2,300 days leaving the remaining 766 days (≈

25% of data) as out-of-sample evaluation period. Rolling-estimation window

moves by 1 day (having fixed length of 2,300 days) until the end of out-of-

sample period. Similarly, for 1-step-ahead forecast based on time-varying

models we use first 2,300 observations using optimal bandwidth set in all

sample estimation for respective model specification and tenor9 to obtain

local linear estimates of the respective coefficient functions. We note that for

the purpose of the out-of-sample forecasting procedure, we set the minimum

bandwidth to 0.21 corresponding to the widely used normal reference rule

(b = 1.06σn−1/5) used as a rule-of-thumb optimum bandwidth value.

9In ideal case the optimal bandwidth should be optimized for each estimation round.

However, as claimed also by Chen et al. (2018), there is only limited accuracy gain at a

cost of significantly longer and more demanding computation process.
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In order to evaluate in-sample fit of the competing models for individual

maturities, we consider multiple loss functions. First, we employ commonly

used mean absolute error (MAE) and mean squared error (MSE) defined as:

MAE =
1

T

T∑
i=1

|R̂Vt −RVt| (10)

MSE =
1

T

T∑
i=1

(R̂Vt −RVt)2 (11)

We take into account also additional loss functions in order to control for

a potential systemic asymmetry in forecasting errors of individual models.

We follow Nomikos and Pouliasis (2011) and construct two mean mixed error

functions each penalizing either over- or under-predictions:

MME(O) =
1

T

(∑
i∈U

|R̂Vt −RVt|+
∑
i∈O

√
|R̂Vt −RVt|

)
(12)

MME(U) =
1

T

(∑
i∈U

√
|R̂Vt −RVt|+

∑
i∈O

|R̂Vt −RVt|

)
(13)

where O and U are sets of days of over-predictions and under-predictions,

respectively. All error metrics for each model are reported in relative terms to

the forecasting errors generated by constant-coefficient HAR model serving

as a benchmark in our analysis.

In order to pick the best performing models from the total of 8 model

specifications (namely HAR, HAR-M, HAR-C and HAR-CM and their time-

varying counterparts) for each maturity, we apply a Model Confidence Set

(MCS) methodology introduced by Hansen et al. (2011). As compared to

Diebold-Mariano test (Diebold and Mariano, 2002) or CPA test (Giacomini
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and White, 2006) often used in related literature for comparison of two com-

peting models, MCS is designed to select a superior subset of tested models

with statistically equal performance. Let M0 denote set of compared mod-

els. MCS procedure consists of sequential testing of zero hypothesis of equal

performance of all model combinations H0,M = E|Li,t − Lj,t| = 0, where

L is a chosen loss function and i, j ∈ M . Sequential elimination of worst-

performing models (p-value ≤ α) results in model confidence set of surviving

models M̂∗
1−α containing the best-performing model at 1−α confidence. For

our out-of-sample performance evaluation we consider 80% confidence level

with an average block length of 3 days10.

When evaluating the out-of-sample forecasting performance we proceed

as follows. First, we focus on each forecasting horizon separately to reveal

differences across the term structure. Second, we look at individual tenors

and find the most versatile models irrespective of the forecasting horizon.

Third, we take a closer look at potential asymmetry of the forecasting errors

to reveal potential systemic over- or under-predictions of the models. Finally,

we check whether there is a single model performing reasonably well across

horizons and maturities significantly outperforming the HAR model popular

among practitioners for its versatility and solid forecasting performance.

Table 6 shows one-day ahead loss relative to HAR model for each tenor

and loss function. We see that except for the shortest tenor, HAR model

is always included in the model confidence set but with the only exception

never ranks among top three best performing models based on any loss func-

10We use the default setting of the MCS package for R software. Change of block length

does not have any material impact on our results.
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tion. Even if the MCS procedure has not eliminated many models, we detect

the first signals of systemic forecasting performance differences for the short

and long maturities which become more evident for the longer forecasting

horizons. First, we find that inclusion of control variables (risk-free, EPU

index or VIX index) significantly under-perform the others both in constant-

coefficient and time-varying specification for short tenors. On the other hand,

inclusion of realized moments is significantly improving the forecasting accu-

racy especially in the time-varying version (TVHAR-M ranks among top 3

for all the loss functions). On the other hand, we find the control variables

to contribute significantly to forecasting performance for the longest tenor.

Generally we find the time-varying models to be inferior to the constant coef-

ficient models for 30-year tenor since except for TVHAR none of the models

ranks among top 3 for any loss function.

Model confidence set for forecast of mean volatility in the next 5 days

shows similar results as the next-day forecasts described above with few

interesting differences. First, we find the HAR model to significantly under-

perform also in case of the 5-year tenor in addition to the shortest one.

Interestingly, in contrast to the 1-day ahead case, we find the time-varying

models to be included in the model confidence set for all loss functions also

in case of the 30-year tenor. Looking at the top 3 best performing models, we

detect clear under-performance of the constant-coefficient models in general

both for 2-year and 5-year tenors. On the other hand, TVHAR-M has ranked

top 3 for both tenors based on any loss function. Reverse conclusions hold for

the 10-year and 30-year tenors where the time-varying models rank among

three best based on a single loss function at most and constant-coefficient
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Daily: logRVt+1

Loss Model TU FV TY US

MAE HAR 1.000 1.000 1.000 1.000

HAR-M 0.980 0.993 1.000 1.000

HAR-C 0.996 0.994 0.990* 0.991*

HAR-CM 0.981 0.989* 0.993 0.992

TVHAR 0.980 0.994 0.995 0.998

TVHAR-M 0.971* 0.999 1.002 1.025

TVHAR-C 0.983 1.056 1.001 1.007

TVHAR-CM 0.976 0.999 1.000 1.014

MSE HAR 1.000 1.000 1.000 1.000

HAR-M 0.977 0.981 0.990 1.004

HAR-C 0.998 0.995 0.991 0.992*

HAR-CM 0.979 0.977* 0.981* 0.997

TVHAR 0.971 0.987 0.991 1.009

TVHAR-M 0.961* 0.983 0.991 1.042

TVHAR-C 0.984 1.108 1.019 1.027

TVHAR-CM 0.973 0.993 0.999 1.034

MME(O) HAR 1.000 1.000 1.000 1.000

HAR-M 0.984 0.999 1.004 0.997

HAR-C 0.994 0.995 0.992* 0.990*

HAR-CM 0.983* 0.995* 0.999 0.991

TVHAR 0.994 0.999 0.997 0.998

TVHAR-M 0.990 1.006 1.005 1.016

TVHAR-C 0.995 1.048 1.001 1.000

TVHAR-CM 0.993 1.006 1.005 1.002

MME(U) HAR 1.000 1.000 1.000 1.000

HAR-M 0.981 0.995 0.999 0.998

HAR-C 1.000 0.997 0.992* 0.994

HAR-CM 0.983 0.993* 0.994 0.991*

TVHAR 0.981 0.996 0.996 0.995

TVHAR-M 0.970* 0.998 1.003 1.020

TVHAR-C 0.984 1.036 0.997 1.005

TVHAR-CM 0.974 0.998 0.999 1.013

The table shows MAE, MSE, MME(O) and MME(U) loss functions relative to the loss of HAR model.

Values in bold indicate the model to be included in the 80% model confidence set for the respective tenor.

Underlined values indicate the model to rank among top 3 best performing models and * denotes the best

model according to Tmax statistics.

Table 6: Out-of-sample evaluation: 1-day volatility forecasts (logRVt+1)
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Weekly: logRVw,t+1

Loss Model TU FV TY US

MAE HAR 1.000 1.000 1.000 1.000

HAR-M 0.975 0.989 0.992 0.997

HAR-C 0.997 0.990 0.987 0.985

HAR-CM 0.971 0.981 0.978* 0.982*

TVHAR 0.944 0.976 1.008 1.006

TVHAR-M 0.943* 0.966 1.013 1.026

TVHAR-C 0.948 0.970 0.992 1.005

TVHAR-CM 0.943 0.959* 0.996 1.018

MSE HAR 1.000 1.000 1.000 1.000

HAR-M 0.955 0.970 0.987 1.002

HAR-C 0.982 0.982 0.971 0.979*

HAR-CM 0.939 0.953 0.957* 0.982

TVHAR 0.869 0.938 0.999 1.074

TVHAR-M 0.871* 0.920* 1.025 1.099

TVHAR-C 0.878 0.949 1.006 1.084

TVHAR-CM 0.872 0.932 1.029 1.102

MME(O) HAR 1.000 1.000 1.000 1.000

HAR-M 0.986 0.994 0.991 1.002

HAR-C 0.995 0.993 0.992 0.990*

HAR-CM 0.978* 0.987 0.982* 0.992

TVHAR 0.990 0.989 1.018 1.004

TVHAR-M 0.990 0.984 1.016 1.020

TVHAR-C 1.002 0.990 1.012 1.011

TVHAR-CM 0.997 0.977* 1.010 1.024

MME(U) HAR 1.000 1.000 1.000 1.000

HAR-M 0.978 0.995 0.998 0.995

HAR-C 1.006 0.992 0.993 0.987

HAR-CM 0.986 0.992 0.988 0.981

TVHAR 0.938 0.982 0.995 0.984

TVHAR-M 0.936 0.978 1.001 1.001

TVHAR-C 0.935 0.970 0.977* 0.978*

TVHAR-CM 0.932* 0.967* 0.981 0.985

The table shows MAE, MSE, MME(O) and MME(U) loss functions relative to the loss of HAR model.

Values in bold indicate the model to be included in the 80% model confidence set for the respective tenor.

Underlined values indicate the model to rank among top 3 best performing models and * denotes the best

model according to Tmax statistics.

Table 7: Out-of-sample evaluation: 1-week volatility forecasts (logRVw,t+1)
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HAR-CM shows the most robust performance across the loss functions.

More differentiated forecasting performance in case of mean volatility

in the next month (or 21 days) translates to more restricted model confi-

dence sets (see Table 8). Except for the 2-year tenor, all time-varying model

specifications are included in the model confidence set. For the shortest

tenor, HAR-M model shows the most robust performance ranking among

top three for 3/4 of the loss functions. For the longer maturities, static mod-

els never rank among top three models with very few exceptions. TVHAR

and TVHAR-M models are superior for the 5-year tenor, whereas TVHAR

and TVHAR-C always rank among the top in case of 10-year tenor.

When we look at forecasts of daily volatility in 5-days (Table 9), we

again find contrasting poles of 2-year and 30-year tenors. In case of the for-

mer, we find the constant-coefficient models to be oftern excluded from the

MCS whereas the time-varying models are always included and except for

the TVHAR-CM model rank among top three models for each of the loss

functions. On the contrary, none of the time-varying models is included in

the model confidence set in case of the 30-year tenor. For the 5-year tenor,

TVHAR and TVHAR-M show the most consistent performance and HAR-

CM model always ranks among top three for both longer maturities. Bench-

mark HAR model never ranks among the top models for any loss functions

and maturity.

For the 21-day horizon, we find only TVHAR model to be included in

model confidence sets for all tenors based on any loss function. Together

with TVHAR-M model it is a consistent out-performer ranking among top

three for any loss function so is the constant-coefficient HAR-C model for
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Monthly: logRVm,t+1

Loss Model TU FV TY US

MAE HAR 1.000 1.000 1.000 1.000

HAR-M 0.973* 0.983 0.988 0.996

HAR-C 1.011 1.014 0.994 0.993

HAR-CM 0.977 0.999 0.982 0.986

TVHAR 1.030 0.932 0.861* 0.934*

TVHAR-M 1.037 0.918* 0.874 0.946

TVHAR-C 1.056 0.964 0.863 0.947

TVHAR-CM 1.059 0.951 0.879 0.964

MSE HAR 1.000 1.000 1.000 1.000

HAR-M 0.931* 0.963 0.975 0.997

HAR-C 1.015 1.011 0.988 0.999

HAR-CM 0.940 0.971 0.962 1.000

TVHAR 1.029 0.917 0.790* 0.897*

TVHAR-M 1.052 0.890* 0.823 0.924

TVHAR-C 1.050 0.984 0.836 0.955

TVHAR-CM 1.061 0.956 0.871 0.982

MME(O) HAR 1.000 1.000 1.000 1.000

HAR-M 1.000 0.989 0.991 0.997

HAR-C 0.980 1.007 0.996 0.995

HAR-CM 0.969 0.998 0.986 0.987

TVHAR 1.140 0.987 0.939 1.008

TVHAR-M 1.142 0.970* 0.946 1.010

TVHAR-C 1.185 1.028 0.938 1.021

TVHAR-CM 1.186 1.011 0.948 1.030

MME(U) HAR 1.000 1.000 1.000 1.000

HAR-M 0.967 0.986 0.994 1.001

HAR-C 1.033 1.016 0.996 0.994

HAR-CM 0.998 1.003 0.989 0.990

TVHAR 0.912* 0.914 0.859 0.904*

TVHAR-M 0.917 0.909* 0.868 0.917

TVHAR-C 0.923 0.922 0.856* 0.907

TVHAR-CM 0.926 0.916 0.867 0.924

The table shows MAE, MSE, MME(O) and MME(U) loss functions relative to the loss of HAR model.

Values in bold indicate the model to be included in the 80% model confidence set for the respective tenor.

Underlined values indicate the model to rank among top 3 best performing models and * denotes the best

model according to Tmax statistics.

Table 8: Out-of-sample evaluation: 1-month volatility forecasts (logRVm,t+1)
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5 days ahead: logRVt+5

Loss Model TU FV TY US

MAE HAR 1.000 1.000 1.000 1.000

HAR-M 0.995 0.994 0.995 0.993

HAR-C 1.004 0.999 0.995 0.994

HAR-CM 0.998 0.993 0.990* 0.988*

TVHAR 0.933* 0.969 0.978 1.019

TVHAR-M 0.939 0.966* 0.978 1.016

TVHAR-C 0.941 0.976 0.984 1.044

TVHAR-CM 0.946 0.972 0.973 1.025

MSE HAR 1.000 1.000 1.000 1.000

HAR-M 1.003 0.999 1.002 0.993*

HAR-C 0.994 0.998 0.996* 1.000

HAR-CM 0.997 0.997 0.997 0.994

TVHAR 0.971* 0.985 0.998 1.069

TVHAR-M 0.981 0.986* 1.001 1.065

TVHAR-C 0.971 0.995 1.006 1.116

TVHAR-CM 0.980 0.995 1.001 1.071

MME(O) HAR 1.000 1.000 1.000 1.000

HAR-M 0.998 0.998 0.994 0.996

HAR-C 1.002 0.998 0.995 0.994

HAR-CM 0.997 0.997 0.989 0.991*

TVHAR 0.976* 0.996 0.993 1.037

TVHAR-M 0.980 0.994* 0.993 1.025

TVHAR-C 0.985 0.999 0.995 1.057

TVHAR-CM 0.988 0.995 0.986* 1.036

MME(U) HAR 1.000 1.000 1.000 1.000

HAR-M 0.994 0.993 0.993 0.995

HAR-C 1.006 1.000 0.996 0.994

HAR-CM 0.999 0.994 0.991* 0.991*

TVHAR 0.954* 0.993 1.006 1.027

TVHAR-M 0.957 0.989* 1.004 1.030

TVHAR-C 0.957 0.998 1.011 1.049

TVHAR-CM 0.961 0.995 1.002 1.036

The table shows MAE, MSE, MME(O) and MME(U) loss functions relative to the loss of HAR model.

Values in bold indicate the model to be included in the 80% model confidence set for the respective tenor.

Underlined values indicate the model to rank among top 3 best performing models and * denotes the best

model according to Tmax statistics.

Table 9: Out-of-sample evaluation: 5-day ahead volatility forecasts (logRVt+5)
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21 days ahead: logRVt+21

Loss Model TU FV TY US

MAE HAR 1.000 1.000 1.000 1.000

HAR-M 0.991 0.988 0.993 0.999

HAR-C 1.015 1.004 0.999 0.996

HAR-CM 1.005 0.991 0.992 0.995*

TVHAR 0.985 0.963 0.949 1.009

TVHAR-M 0.992 0.963* 0.949* 1.034

TVHAR-C 0.984* 0.975 0.957 1.056

TVHAR-CM 0.989 0.975 1.010 1.084

MSE HAR 1.000 1.000 1.000 1.000

HAR-M 0.994* 0.987 0.992 1.000*

HAR-C 1.004 1.002 0.998 1.002

HAR-CM 0.996 0.989 0.990 1.002

TVHAR 1.053 0.984 0.942* 1.021

TVHAR-M 1.064 0.984* 0.943 1.056

TVHAR-C 1.046 0.993 0.950 1.107

TVHAR-CM 1.054 0.992 1.080 1.144

MME(O) HAR 1.000 1.000 1.000 1.000

HAR-M 0.994* 0.990 0.996 1.000

HAR-C 1.006 1.005 0.999 0.996*

HAR-CM 1.000 0.994 0.994 0.998

TVHAR 1.015 0.961 0.955 1.026

TVHAR-M 1.019 0.960* 0.954* 1.046

TVHAR-C 1.020 0.975 0.965 1.067

TVHAR-CM 1.019 0.976 1.013 1.089

MME(U) HAR 1.000 1.000 1.000 1.000

HAR-M 0.992 0.990 0.995 0.998

HAR-C 1.015 1.001 1.000 0.993

HAR-CM 1.006 0.990 0.994 0.992*

TVHAR 0.960 0.971 0.966 0.994

TVHAR-M 0.963 0.972* 0.966* 1.009

TVHAR-C 0.955* 0.980 0.970 1.023

TVHAR-CM 0.958 0.980 0.999 1.043

The table shows MAE, MSE, MME(O) and MME(U) loss functions relative to the loss of HAR model.

Values in bold indicate the model to be included in the 80% model confidence set for the respective tenor.

Underlined values indicate the model to rank among top 3 best performing models and * denotes the best

model according to Tmax statistics.

Table 10: Out-of-sample evaluation: 21-day ahead volatility forecasts (logRVt+21)
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the 30-year tenor. In case of the 2-year tenor there is no model ranking in

the top three for more than two out of four loss functions.

Figure 13 summarises how frequently each of the models was included in

the model confidence set or ranked among the three best performing models

according to the Tmax statistic as described in Hansen et al. (2011) reveal-

ing the most versatile models for each tenor irrespective of the forecasting

horizon. We find time-varying models to outperform the constant-coefficient

models for the 2-year, 5-year and 10-year maturity whereas constant-coefficient

models especially those including the control variables show to be useful tools

for the longest tenor. Despite HAR model has been included in the respective

model confidence sets for 50%-80% cases, it ranked among top 3 only in 0-

20% cases. In terms of model performance ranking, TVHAR and TVHAR-M

are found as most versatile for the two shortest tenors, TVHAR and HAR-

CM for the 5-year and the two static models containing the control variables

for the longest maturity.

(a) Model confidence set (b) Top 3 ranking

Figure 13: Frequency of inclusion to MCS and top-3 ranking (based on Tmax statistic)

across all forecasting horizons and loss functions
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Finally, we analyze any potential systemic over- or under-predictions of

the individual models. For the 1-day forecasting horizon, MME(U) and

MME(O) do not show any permanent asymmetry of the forecasts and report

only slight differences in rankings. The only discrepancy worth highlight-

ing is that MME(O) detect HAR-M and HAR-CM models with the lowest

errors whereas the MME(U) loss reports the lowest errors for their time-

varying counterparts suggesting that inclusion of moments for the 2-year

tenor volatility forecasting is the beneficial in any case and the dynamics in

coefficients is nice-to-have if we care more about under-predictions.

For the weekly volatility predictions, we find a systemic under-predictions

of the constant-coefficient models across the maturities. Looking at the op-

posite poles of the term structure, we observe the lowest MME(O) errors for

the static models including moments (i.e. HAR-M and HAR-CM) for the

2-year and those including controls (i.e. HAR-C and HAR-CM) of the 30-

year tenor. In both cases, MME(U) reports the comparable or lower errors

for their respective time-varying counterparts. This shift is even stronger

for the monthly volatility predictions where we see the strongest evidence of

systemic under-prediction of the constant-coefficient models across the entire

term structure irrespective of a concrete model specification.

In case of the 5-day horizon, we find similar outcome as for the 1-day

horizon with no major shifts in model performance evaluation. However, in

case of 21-day ahead forecasts, we again observe significant under-predictions

for the 2-year tenor.
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5. Conclusion

Volatility forecasting on bond markets is of indisputable interest to in-

vestors and researchers due to immense trading volumes of sovereign fixed-

income securities and very different investment proposition to stocks not

allowing for an automatic extension of evidence found on the stock market

(heavily studied by researchers) also to the bond market. In this paper we

study predictability of U.S. sovereign bond futures realized volatility over

period 2006-2017 for 2-year, 5-year, 10-year and 30-year tenor. We extend

heterogeneous autoregressive realized volatility model by Corsi (2009) serving

as benchmark by higher-order realized moments, namely realized skewness

and kurtosis while controlling for risk-free rate, economic policy uncertainty

and expected equity market volatility captured by VIX index.

There are multiple contributions of this paper both for researchers and

practitioners. We provide the first consistent study of volatility forecasting

across the entire term structure confirming that different investment propo-

sitions of short and long tenors are also reflected in predictability of future

volatility. Most importantly, we discover two main patterns in the out-of-

sample analysis using Model Confidence Set evaluation procedure by Hansen

et al. (2011) robust across considered loss functions. First, inclusion of higher

moments (namely realized kurtosis) is beneficial but the effect is diminishing

with increasing time to maturity. On the other hand, for the longer tenors,

we find bond market control variables to contribute significantly. Second,

allowing variation of the coefficients in time is of significant value for the

shorter end of the term structure while extended constant-coefficient models

(especially for the bond-market controls) are performing well for the longest
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tenors. Generally, we found the forecasting performance of the inspected

models to decrease with time to maturity. We also inspect any systemic

asymmetry using mean mixed errors introduced by Nomikos and Pouliasis

(2011) penalizing over- or under-predictions. We found a strong tendency of

the static models to generate under-predictions in our out-of-sample period.
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TU FV TY US

(Intercept) 0.002 0.002 0.004 0.006

(0.011) (0.013) (0.013) (0.014)

logRVd 0.080 *** 0.104 *** 0.120 *** 0.130 ***

(0.021) (0.021) (0.021) (0.021)

logRVw 0.348 *** 0.310 *** 0.282 *** 0.251 ***

(0.040) (0.041) (0.036) (0.035)

logRVm 0.389 *** 0.329 *** 0.302 *** 0.288 ***

(0.036) (0.036) (0.031) (0.031)

∆RF -0.050 *** -0.047 *** -0.052 *** -0.045 **

(0.011) (0.014) (0.013) (0.014)

EPU 0.004 0.005 0.029 0.051 **

(0.011) (0.013) (0.014) (0.015)

∆V IX 0.038 *** 0.044 ** 0.049 ** 0.059 ***

(0.011) (0.013) (0.014) (0.014)

R2 63.9% 50.9% 46.2% 42.0%

The number in paranthesis is heteroskedasticity and autocorrelation robust Newey-West stan-

dard error. ***, ** and * denotes siginficance at 0.1%, 1% and 5%, respectively.

Table .11: Estimation results of constant-coefficient HAR-C model
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