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Abstract: 
This article presents a new approach for building robust portfolios based on 
stochastic efficiency analysis and periods of market downturn. The empirical 
analysis is done on assets traded on the Brazil Stock Exchange, B3 (Brasil, Bolsa, 
Balcão). We start with information on the assets from periods of market downturn 
(worst-case) and we group them using hierarchical clustering. Then we do stochastic 
efficiency analysis on these data using the Chance Constrained Data Envelopment 
Analysis (CCDEA) model. Finally, we use a classical model of capital allocation to 
obtain the optimal share of each asset. Our model is able to accommodate investors 
who exhibit different risk behaviors (from conservatives to risky investors) by 



 

varying the level of probability in fulfilling the constraints (1-αi) of the CCDEA 
model. We show that the optimal portfolios constructed with the use of information 
from periods of market downturns perform better for the Sharpe ratio (SR) in the 
validation period. The combined use of these approaches, using also fundamentalist 
variables and information on market downturns, allows us to build robust portfolios, 
with higher cumulative returns in the validation period, and portfolios with lower 
beta values. 
 
JEL: G11, G14, C38, C61 
Keywords: Robust optimization, Stochastic evaluation, Chance Constrained DEA, 
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1. INTRODUCTION 

Diversification is a critical factor in reducing non-systematic risk in portfolio selection theory. 

There has been a growing amount of published research seeking to reconcile the benefits of diversification 

with investment practices (Kim et al., 2015). Portfolio selection involves allocating capital among a 

certain number of assets so that the investment provides a higher return while minimizing risks i.e., a risk-

adjusted return that is satisfactory for investors, similar to what was proposed in Markowitz (1952), 

models (Leung et al., 2012). 

Almost seventy years after the development of the Markowitz model (1952), this classic approach 

of mean-variance, which was a pioneering work, is still one of the most used models in asset allocation 

and management, and has given rise to many new approaches (Leung et al., 2012), that have been 

developed by various academics (Chen et al., 2020; Leung et al., 2012; Levy & Levy, 2014). Whether for 

researchers or for investors, the investment selection process remains a major challenge for financial 

management (Markowitz, 2014). 

Among several tools for efficiency measurement e.g., conventional statistical methods, non-

parametric methods and artificial intelligence methods, Data Envelopment Analysis (DEA) can effectively 

measure the relative efficiency of Decision Making Units (DMUs), which employ multiple inputs to 

produce multiple outputs (Emrouznejad & Tavana, 2014; Shi & Wang, 2020). 

DEA is a non-parametric method that has been broadly used in different types of companies and 

organizations, helping managers from diverse areas, including the financial area (Azadi et al., 2015; 

Emrouznejad & Tavana, 2014; Kao, 2014). More recently, DEA continues to be used in efficiency 

evaluation and building portfolios (Amin & Hajjami, 2020; Choi & Min, 2017; Edirisinghe & Zhang, 

2010; Lim et al., 2014; Rotela Junior et al., 2015). 

Variations of classic models of Data Envelopment Analysis have since been presented. Among 

these models, some seek to include approximate information or uncertainty, using a DEA model with 
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Fuzzy coefficients (Azadi et al., 2015), or models like those proposed by Sengupta (1987), which combine 

Chance-Constrained Programming (CCP), from Charnes and Cooper (1963), with the Data Enveloping 

Analysis model (Jin et al., 2014).  

The most widespread and traditional models of portfolio optimization theory, such as the reference 

models presented by Markowitz (1952), and Sharpe (1963), are recognized for being sensitive to small 

variations in inputs, and not considered robust (Kim et al., 2014; Kim et al., 2015). Consequently, 

researchers started to develop mathematical techniques on robust optimization. Several approaches have 

been used to increase the robustness of traditional models using mean-variance, and these approaches 

usually deal with solving max-min problems (Won & Kim, 2020; Xidonas et al., 2017). These techniques 

allow investors to incorporate risk into their portfolio optimization process considering estimate errors 

(Baltas & Yannacopoulos, 2019; Fabozzi et al., 2007, 2010; Sehgal & Mehra, 2020). Robust portfolio 

optimization has quickly become a widely applied approach among investors to incorporate uncertainty 

into their financial models (Kim et al., 2018). 

According to Myers et al. (2009), the two main objectives for robustness process studies are: (i) 

ensure that the average response is as close as possible to an ideal value; (ii) ensure that the variance 

around this average is as small as possible.  

Other relevant information for portfolio optimization theory was presented by Kim et al. (Kim et 

al., 2014, Kim et al. 2018; Kim et al., 2015). The authors state that the so-called robust models are 

achieved based on information coming from bear market periods. In other words, this information is more 

relevant than information coming from peak market periods, when seeking robustness. More recently, 

other researchers have analyzed market downturn conditions when proposing portfolio optimization 

models (Ashrafi & Thiele, 2021; Yu et al., 2019). 
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This study seeks to present a method for robust portfolio optimization based on the stochastic 

analysis of asset efficiency, using asset information taken from worst-case market scenarios. We used data 

from the Brazilian Stock Exchange (B3 - Brasil, Bolsa, Balcão).  

In general terms, the presented model is the result of a combination of different mathematical 

techniques: Hierarchical Clustering, Chance-Constrained DEA (CCDEA), and the Sharpe approach. 

Hierarchical Clustering will be used to form different clusters, which contribute to diversifying the 

portfolio. The CCDEA model will allow us to stochastically identify the efficient assets in each group. 

Sharpe’s approach will allow us to optimally allocate efficient assets in the portfolios. It is worth 

mentioning that information from worst-case market scenarios will be used, as this has been shown to be 

essential for building so-called robust portfolios. Finally, we will study the effect of adjusting risk criteria 

for meeting investor requirements with different risk profiles. 

2.  CHANCE CONSTRAINED DATA ENVELOPMENT ANALYSIS 

Data Envelopment Analysis (DEA) has been gaining more popularity as a non-parametric 

efficiency technique for measuring the performance of financial assets, as can be seen in recent studies 

such as Adam & Branda (2021) and Choi & Min (2017).  The most used classic models in literature are 

deterministic and do not consider random input and output variable errors. According to Azadi and Saem 

(2012), the generalized randomness in the evaluation processes comes from data collection errors. 

One of the first attempts to fill this gap involved developing Chance Constrained Programming in 

mathematical models for Data Envelopment Analysis (Charnes & Cooper, 1959), to incorporate stochastic 

variations in the data. 

Saen and Azadi (2011), define Chance Constrained Programming (CCP) as a type of approach for 

stochastic optimization, appropriate for solving optimization problems with random variables included in 

the constraints, and sometimes in the objective function, as was done by Charnes and Cooper (1959) . The 

major contribution can be found in the research carried out by Sengupta (1987). CCP can effectively 



 4 

reflect the reliability of satisfying, or even the risk of violating, a system with constraints under risk 

conditions.  CCP does not require that all constraints be completely satisfied. The constraints are satisfied 

according to established probabilities (Azadi et al., 2012; Farzipoor Saen & Azadi, 2011). 

The stochastic DEA model formulation is presented according to equations 1 through 4, where the 

i-th DMU, and  respectively denote the stochastic variables for the 

input and output vectors, where i=1,...,n. The objective function of the stochastic model is formulated by 

Equation 1, where ‘E’ represents an expected value from the sum of weighted . 

 (1) 

Subject to:  

 
(2) 

 
(3) 

 (4) 

uq and vp respectively indicate the weight of the multipliers associated with the q-th output and the 

p-th input. u1,…,ub, v1,...,va are the weights that will be calculated by the optimization model. P is the 

probability, and superscript `^` means that and are random variables. Regarding the constraints, the 

model states that  the proportion equal or inferior to βi represents an efficiency level expected for the i-th 

DMU, the variation of which is in [0,1], and it is  the desired level (Cooper et al., 1996; Jin et al., 2014; 

Rotela Junior et al., 2015). αi is the risk criterion adopted by the decision maker. 1-αi is the probability of 

meeting the constraint requirements, which is a level of confidence (Jin et al., 2014; Rotela Junior et al., 

2015), the variation of which is in [0,1]. 
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The formulation needs to be rewritten as proposed by Charnes and Cooper (1963), to provide a 

viable model from a computational point of view. Randomness is considered in this proposal, and the 

stochastic variable for each input can be represented as , where p presents a variation in 

the interval  [1,b], and i is in [1,n]; is the expected value of  and is the standard deviation (Rotela 

Junior et al., 2015). 

Similarly, the stochastic variable for each output can be represented as , where q 

has a variation in [1,a], and i in [1,n]; is the expected value of and  is the standard deviation. 

Thus, it is assumed that the random variable  follows a normal distribution, since part of the stochastic 

disorders suggest that the errors are the result of data collection. 

In order to make the model solution simpler, it is convenient to present its equivalent deterministic 

formulation. The objective function (as presented in Equation 1), can be remodeled according to Equation 

5: 

 (5) 

The model constraints, according to Equations 2 and 3, when including the stochastic process, will 

be rewritten in Equations 6 and 7:  
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(7) 

Mi and Vi are the average and variance of each random variable. These can be expressed as 

Equations 8 and 9: 

 (8) 

 (9) 

In this way, the random variable follows a normal distribution of mean 

zero and variance one. Thus, Equation 7 can be expressed according to Equation 10, or even in its 

equivalent form as expressed by Equation 13. 
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In this model, ϕ represents a function of standard normal distribution, and ϕ-1 is the inverse of the 

function. Finally, the CCDEA optimization model can be discussed. In this manner, the original proposal 

is presented as a linear model, according to Equations 12-15: 

 (12) 

Subjected to:  

 (13) 

 (14) 

 (15) 
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Litterman (1992), a small variation in the expected return of assets can result in a large alteration in the 

allocation of investments in an optimized portfolio. In other words, classic models for portfolio 

optimization are not robust because they are susceptible to small variations in data input (Kim et al., 

2015). As a matter of fact, Kim et al. (2014), affirmed that the main reason for questioning the Markowitz 

(1952) model is because of its high sensitivity towards small variations in input values. 

Researchers have begun to incorporate risk by estimating errors directly in the portfolio 

optimization process using mathematical techniques for robust optimization. Different from traditional 

approaches where the inputs for the structure of portfolio allocation are deterministic, robust portfolio 

optimization incorporates the notion that these inputs have been estimated with errors (Fabozzi et al., 

2007, Fabozzi et al. 2010). In this case, inputs like the expected return and asset covariance are not 

traditional predictions but rather sets of probabilities e.g., confidence intervals. The two best-known 

methodologies for dealing with risk are robust and stochastic optimization (Xidonas et al., 2020). 

It was identified that the correlation between assets tends to increase during periods of low market 

(bear market) performance, so investors cannot benefit from diversification when it is most needed. Worse 

still, correlation within capital markets has been increasing in recent periods (Kim et al., 2015). Some 

solutions have been proposed to overcome this problem, like employing input variables that are less 

sensitive to historic data, or inserting risk sets on the input parameters of traditional models (Fabozzi et al., 

2007). 

Of the several approaches for increasing robustness in the mean-variance model, robust portfolio 

optimization applies robust optimization techniques for asset allocation by  solving max-min problems 

(Won & Kim, 2020; Xidonas et al., 2017). According to Kim et al. (2015), even though worst-case 

optimization seems to be a natural extension of the mean-variance model for achieving robustness, more 

in-depth analysis on the importance of concentration in worst-case market scenarios has not been 

conducted. 



 9 

The main contribution of the work conducted by Kim et al. (2015) was to demonstrate the 

importance of information on asset returns on the worst-performing days for achieving a robust portfolio. 

In other words, instead of selecting assets that always perform well in both bear markets and bull markets, 

assets that perform well in bear markets are usually considered. Therefore, these researchers believe that 

robustness can be achieved when worst-case market information is considered. 

Furthermore, it is known that low beta assets perform better than high beta assets in crisis periods 

(market declines), since low beta assets reduce the overall risk and offer better returns (Kim et al., 2015). 

4. MATERIALS AND METHOD 

In order to establish a strategy for robust portfolio optimization using stochastic efficiency 

analysis, we used the following observations as starting points:  

i. Preliminary results indicate that Data Envelopment Analysis (DEA) is well suited for determining 

portfolio composition. DEA allows assets to be evaluated using criteria that represent investor 

interests, supporting the classic models of mean and variance; 

ii. DEA models that consider data randomness allow investors to reduce the search space for assets 

that perform well, by presenting good data discrimination; 

iii. Risk variation in stochastic efficiency analysis can meet the needs of investors with different 

attitudes towards risk; 

iv. One difficulty in applying CCDEA to portfolio optimization (depending on the data) is the 

contradictory behavior of the constraints, making it difficult to identify efficient assets; 

v. Hierarchical Clustering allows individuals or assets to be grouped based on the similarity or 

dissimilarity of these initial groups; 

vi. Robust portfolio models achieve robustness by concentrating on information gathered from crisis 

periods or market recessions i.e., poor performance days are fundamental for building portfolios 

that perform well under any market conditions. 
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4.1.  Selecting the input and output variables 

After defining the object of study, we set out to select a set of indicators that will be used as input 

and output variables in the efficiency analysis. 

Efficiency considerations, which are essential for the definitions and assessments of interest in 

DEA, are presented through a definition of mathematical reason, which in a very simple way is 

represented by output divided by input. This simple ratio formulation can be extended to multiple outputs 

and inputs in order to be presented by more complex formulations (Cook & Zhu, 2014; Cooper et al., 

2002). Then, following the premises presented in the extensive DEA literature, the variables in this study 

will be defined as outputs or inputs.  

Conclusions from Siriopoulos and Tziogkidis (2010), were taken into consideration. They state 

that highly correlated inputs and outputs do not significantly affect the efficiency results. Therefore, we 

did not see a need to perform correlation tests for the possible input and output variables. 

We chose to use input and output variables present in literature for DEA applications in the stock 

market (Powers & Mcmullen, 2002; Rotela Junior et al., 2014; Rotela Junior et al., 2015). It should be 

remembered that low beta assets have better returns while reducing the overall risk of the portfolio in 

worst-case market scenarios (Kim et al., 2015). 

For this study, we chose to use the asset return, asset liquidity, and earnings per share (EPS) as 

output model variables. For input variables we chose to use the beta, the price-earnings (PE), and volatility 

(Kim et al., 2015; Powers & Mcmullen, 2002; Rotela Junior et al., 2014; Rotela Junior et al., 2015). 

4.2.   Selecting the sample and data collection  

The sample comprised assets traded on the Brazilian Stock Exchange B3 (Brasil, Bolsa, Balcão). 

The B3 was founded after a merger between BM&FBOVESPA and Cetip, with participation in the 

Bovespa Index (Ibovespa). It is necessary that the assets present information from the long-term period. 
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Kim et al. (2015) used daily data for the return of the market index to identify worst-case market 

periods. The authors classified all the returns of the index in increasing order within a time interval. They 

then divided this period into n other periods. Within the longer period, the authors defined n as ten, and for 

defining the worst-case market period, the tenth period was selected, corresponding to the smallest values 

presented for the index. We used the same approach adopted by Kim et al. (2015), to identify crisis market 

periods. 

We then proceeded to selecting the sample, however, we observed that only 61 companies in the 

Ibovespa index had all the necessary information for conducting the efficiency analysis. It is worth noting 

that Ibovespa index is a benchmark index of about 60 stocks traded on the Brazilian stock exchange. All 

information on the selected variables were collected by the software program Economática® for the 

stipulated period. 

The information for this study corresponds to daily data from a 10-semester period. To validate the 

results, daily information from a 6-month period was used. It is important to highlight that the period used 

in this study was prior to the global covid-19 pandemic. It is worth noting that there is still no concrete 

evidence of the effects of the pandemic on stock markets. 

The cumulative return was calculated for each proposed portfolio for the validation phase based on 

the results of the models adopted for optimization (identifying the ideal share). 

5.  OPTIMIZING ROBUST PORTFOLIOS 

We started by collecting data in a database, and then proceeded using a proposal from Kim et al. 

(2015) by classifying the returns from Ibovespa in increasing order for the period adopted in this study. 

The remaining spreadsheet information followed such classification, and n was set equal to four for 

defining the worst-case market period, giving the model more than three hundred daily information 

pieces.  
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We calculated the average and variance for each of the variables adopted for the efficiency 

analysis using the data collected for each of the proposed scenarios i.e., worst-case (n = 4), and complete 

market information (n = 1),  

We observed that the number of efficient assets was very reduced, even when varying the risk 

criterion. This led us to believe that the CCDEA model was composed of highly divergent constraints, 

making it more difficult to properly discriminate the analysis. Next, different forms of Hierarchical 

Clustering were tested, and the most viable option for each one of the considered scenarios was to group 

the DMUs by degree of similarity, considering the average and variance of the six variables adopted in 

this study. 

This made it possible to group the DMUs by increasing the degree of similarity between the 

groups in which the efficiencies can be analyzed. Figure 1 shows the DMU grouping using Hierarchical 

Clustering for complete asset information (n = 1). 

 

FIGURE 1. Dendrogram of the grouping considering complete market data information.  

 

Figure 2 shows the DMU grouping for worst-case market periods, defined as n = 4. These 

Figures were obtained using the Minitab® software program. 
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FIGURE 2. Dendrogram of the grouping considering information from worst-case market periods. 
 

Two groupings were performed for each of the two proposed scenarios for the assets that make up 

the more similar groups. 

Grouping can be done in a larger number of groups, however, given the number of variables, the 

model required a minimum number of DMUs for good data discrimination (Cooper et al., 2007), and so 

only two groups were formed. This solution can be adopted to facilitate meeting the constraints in the 

CCDEA model, since they respect the recommendations in the model application. 

Table 1 shows the descriptive statistics of the DMU input and output variables that comprise group 

1 and 2 considering information on the total market state.  

Table 2 shows the descriptive statistics of the DMU input and output variables that comprise 

groups 1 and 2 considering information from the worst-case market periods. 

TABLE 1 - DESCRIPTIVE STATISTICS OF THE INPUT AND OUTPUT VARIABLES OF THE MODEL, FOR GROUP 1 AND 2, CONSIDERING TOTAL MARKET STATE 

INFORMATION 

Group 1 

  
Return Liquidity EPS Beta PE Volatility 

µ1 σ1
2 µ2 σ2

2 µ3 σ3
2 µ4 σ4

2 µ5 σ5
2 µ6 σ6

2 

Mean  0.07 3.52 0.65 0.09 7.03 9.19 0.63 0.01 19.11 132.21 1.87 0.09 
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Median 0.07 3.39 0.59 0.03 6.31 1.89 0.61 0.01 19.49 18.88 1.77 0.08 

Standard 

Deviation 
0.03 0.78 0.26 0.22 3.13 18.73 0.18 0.01 9.55 327.64 0.25 0.06 

Minimum 0.01 2.17 0.29 0.00 2.55 0.18 0.30 0.00 1.00 1.98 1.45 0.01 

Maximum 0.13 4.79 1.30 1.19 14.42 92.35 0.99 0.02 42.94 1706.57 2.31 0.27 

Group 2 

Mean  -0.02 6.02 1.62 0.27 3.36 286.57 1.05 0.01 12.27 3365.30 2.39 0.19 

Median -0.02 5.41 1.04 0.10 6.32 31.91 1.06 0.01 10.24 1393.75 2.33 0.14 

Standard 

Deviation 
0.06 2.29 1.63 0.59 10.38 650.30 0.22 0.01 15.98 4451.30 0.45 0.15 

Minimum -0.17 3.10 0.35 0.01 -26.73 0.54 0.59 0.00 -30.46 2.07 1.70 0.03 

Maximum 0.08 10.70 7.05 2.59 17.39 3173.20 1.50 0.05 47.87 14978.71 3.29 0.60 

 

TABLE 2 - DESCRIPTIVE STATISTICS OF THE INPUT AND OUTPUT VARIABLES OF THE MODEL, FOR GROUP 1 AND 2, CONSIDERING INFORMATION FROM THE 

WORST-CASE MARKET PERIODS 

Group 1 

  
Return Liquidity EPS Beta PE Volatility 

µ1 σ1
2 µ2 σ2

2 µ3 σ3
2 µ4 σ4

2 µ5 σ5
2 µ6 σ6

2 

Mean  -0.98 3.15 0.65 0.09 7.12 9.46 0.63 0.01 19.39 123.06 1.86 0.09 

Median -0.97 3.12 0.60 0.03 6.32 2.12 0.60 0.01 19.27 18.35 1.77 0.07 

Standard 

Deviation 
0.29 0.70 0.26 0.22 3.13 20.24 0.18 0.01 8.48 318.48 0.24 0.06 

Minimum -1.52 1.95 0.29 0.01 2.62 0.20 0.29 0.00 7.77 2.14 1.45 0.01 

Maximum -0.46 4.53 1.31 1.19 14.61 102.62 0.98 0.02 40.20 1686.56 2.29 0.23 

Group 2 

Mean  -1.86 4.42 1.62 0.31 3.25 308.54 1.05 0.01 12.70 3152.21 2.37 0.20 

Median -1.78 4.12 1.04 0.10 6.44 35.82 1.06 0.01 10.61 1127.46 2.31 0.14 

Standard 

Deviation 
0.39 1.93 1.63 0.69 10.92 692.02 0.22 0.01 18.73 4112.77 0.44 0.15 

Minimum -2.79 2.01 0.36 0.01 -29.27 0.58 0.60 0.00 -30.61 1.89 1.70 0.03 

Maximum -1.14 9.85 7.10 3.17 18.03 3312.95 1.51 0.05 65.25 13506.95 3.25 0.64 

 
 

Similar to other studies, negative data were transformed by adding a value that makes the most 

negative value in the series positive for the same variable, without changing the efficiency analysis (Cook 

& Zhu, 2014). It is worth mentioning that the input and output variables were independent in this study. 

The efficiency level (βi) was equal to 1. We observed in the studied data that a good range of 

discrimination was obtained in the analysis units when the risk criterion (αi) was varied between 0.5 and 

0.6. This range will change according to the data submitted to the CCDEA model. 
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The variation within the range stipulated in the previous step may be related to investor’s aversion 

to risk. In this study, a variation of 0.01 was chosen within the relevant range defined for probability 

variation to fulfill constraints (1-αi), generating eleven portfolios for each market state. 

The assets pre-selected by the CCDEA model were submitted to the Sharpe approach (Sharpe, 

1963) for optimal allocation within the portfolio. A similar strategy of pre-specification for assets was 

adopted by Chakrabarti (2021). 

We use the Capital Asset Pricing Model (CAPM), presented by Sharpe (1964), to analyze the 

results and to identify any abnormal returns (Rotela Junior et al., 2014; Rotela Junior et al., 2015). 

The Sharpe ratio is the most commonly used metric for measuring and comparing portfolio performance 

(Homm & Pigorsch, 2012; Kourtis, 2016). 

As previously mentioned, daily information was used for the validation period. The accumulated 

returns were calculated in the validation period for each portfolio according to the participations defined 

by the optimization models. 

5.1. Results and analysis 

Efficiency assessments were carried out for the proposed groups, and αi was considered. Table 3 

shows the efficiency results with different compliance probability levels (defined by 1- αi) of the 

constraints for groups 1 and 2, respectively, when supplied with worst-case market scenario information. 

We evaluated the efficiency of the proposed groups considering the risk criteria adopted.  Table 3 

shows the efficiency results for groups 1 and 2, respectively, when submitted to the CCDEA model under 

different probability levels for fulfilling the model constraints, supplied with complete market information 

taken from the stipulated period. 

Likewise, Table 4 presents the efficiency results for groups 1 and 2, respectively. However, the 

CCDEA model was supplied with information taken from market downturns. It is important to highlight 
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that the likelihood of complying with the constraints of the optimization model increases by reducing the 

risk criterion (αi), making the model more critical. Therefore, fewer assets will be efficient. 

TABLE 3 - DESCRIPTIVE STATISTICS FOR THE EFFICIENCIES OF GROUP 1 AND 2, CONSIDERING FULL MARKET INFORMATION 

Group 1 

 (1-αi) 40% 41% 42% 43% 44% 45% 46% 47% 48% 49% 50% 

Mean  1.25 1.19 1.13 1.08 1.04 1.00 0.96 0.93 0.90 0.88 0.86 

Median 1.24 1.17 1.11 1.06 1.02 0.99 0.96 0.95 0.92 0.89 0.87 

Standard 

Deviation 
0.17 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.12 0.11 

Minimum 0.97 0.92 0.88 0.83 0.80 0.76 0.73 0.70 0.68 0.67 0.66 

Maximum 1.56 1.49 1.40 1.34 1.27 1.22 1.17 1.12 1.08 1.04 1.00 

Group 2 

 (1-αi) 40% 41% 42% 43% 44% 45% 46% 47% 48% 49% 50% 

Mean  2.25 2.07 1.93 1.81 1.69 1.50 1.34 1.22 1.10 1.00 0.82 

Median 1.80 1.68 1.58 1.47 1.37 1.25 1.11 1.02 0.96 0.90 0.82 

Standard 

Deviation 
2.12 2.02 1.84 1.77 1.71 1.37 1.16 1.04 0.81 0.63 0.15 

Minimum 1.10 1.02 0.96 0.90 0.83 0.74 0.66 0.60 0.55 0.51 0.47 

Maximum 13.53 12.77 11.70 11.24 10.81 8.77 7.52 6.77 5.39 4.34 1.00 

 
 

TABLE 4 - DESCRIPTIVE STATISTICS FOR THE EFFICIENCIES OF GROUP 1 AND 2, CONSIDERING WORST-CASE SCENARIO MARKET INFORMATION 

Group 1 

(1-αi) 40% 41% 42% 43% 44% 45% 46% 47% 48% 49% 50% 

Mean  0.96 0.95 0.94 0.92 0.91 0.90 0.89 0.88 0.87 0.86 0.85 

Median 0.97 0.95 0.93 0.92 0.90 0.89 0.87 0.87 0.87 0.86 0.85 

Standard 

Deviation 
0.15 0.15 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.12 0.12 

Minimum 0.70 0.68 0.69 0.68 0.68 0.67 0.66 0.66 0.66 0.65 0.65 

Maximum 1.22 1.20 1.17 1.15 1.13 1.10 1.08 1.06 1.04 1.02 1.00 

Group 2 

(1-αi) 40% 41% 42% 43% 44% 45% 46% 47% 48% 49% 50% 

Mean  1.25 1.14 1.09 1.03 0.99 0.95 0.89 0.85 0.82 0.79 0.75 

Median 1.08 1.03 0.97 0.93 0.91 0.88 0.85 0.83 0.81 0.79 0.76 

Standard 

Deviation 
1.09 0.79 0.70 0.62 0.57 0.54 0.38 0.31 0.27 0.25 0.21 

Minimum 0.39 0.39 0.38 0.38 0.37 0.36 0.32 0.33 0.35 0.31 0.31 

Maximum 6.79 5.05 4.47 4.01 3.68 3.48 2.37 1.83 1.49 1.34 1.00 

 
 

Clustering analysis was conducted to form a cluster of assets with a certain degree of similarity, 

seeking better DMU discrimination, since the divergence between the CCDEA model constraints are 
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reduced when these DMUs are grouped. However, efficient assets in the groups for each market state will 

be gathered and optimized as proposed by Sharpe.  

Since traditional DEA models ignore diversification between investment opportunities (Adam & 

Branda, 2021), Sharpe's model could be necessary to build the portfolio. Efficient assets from Table 3 

were submitted to Sharpe's proposal taking information from the total market state into account for each 

risk criterion (αi) adopted. Then, the assets were allocated in eleven portfolios by varying the risk criterion 

(αi) when the model is supplied with complete market information, or n = 1. It is interesting to observe 

that not all efficient assets considered will be used in the allocation when submitted to the Sharpe model. 

Eleven portfolios were proposed from varying the risk criterion for the total market state (TS) 

information. These were identified as TS-1 to TS-11, to simplify discussion. 

Another eleven portfolios were proposed according to the risk criterion (αi) for the worst-case 

(WS) market information. It is interesting to notice that there were fewer efficient assets when the model 

was supplied with WS market information. When submitted to Sharpe's proposal, only some were selected 

for the portfolios. These portfolios were identified as WS-1 to WS-11, to simplify discussion. 

Table 5 presents the adopted risk criterion (αi), portfolio beta (β), return results (RE and R), 

standard deviation (SD), Sharpe ratio (SR), and number of assets (N) for each TS optimized portfolio. And 

Table 6 presents the same content, but for WS optimized portfolios. 

TABLE 5 - RESULTS BY RISK CRITERIA OF THE OPTIMIZED PORTFOLIOS, BASED ON COMPLETE MARKET INFORMATION 

  TS-1 TS-2 TS-3 TS-4 TS-5 TS-6 TS-7 TS-8 TS-9 TS-10 TS-11 

αi 60% 59% 58% 57% 56% 55% 54% 53% 52% 51% 50% 

β 0.702 0.700 0.691 0.691 0.763 0.713 0.680 0.689 0.668 0.674 0.616 

RE 1.07% 1.07% 1.06% 1.07% 1.09% 1.07% 1.06% 1.06% 1.05% 1.06% 1.03% 

SD 8.80% 8.51% 8.71% 8.90% 8.69% 8.87% 8.97% 8.95% 8.70% 8.61% 9.65% 

R -3.05% -2.68% -3.33% -2.10% -1.00% -0.22% 0.35% 0.39% 2.10% 1.54% 2.96% 

SR -0.467 -0.440 -0.504 -0.356 -0.240 -0.145 -0.079 -0.074 0.120 0.055 0.200 

N 57 54 52 48 45 41 34 26 19 17 12 

AAR -1.59% -1.12% -1.84% 0.05% 1.48% 2.57% 3.90% 4.70% 7.44% 6.53% 9.31% 
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TABLE 6 - Results by risk criterion of optimized portfolios, based on information from periods of market downturns 

  WS-1 WS-2 WS-3 WS-4 WS-5 WS-6 WS-7 WS-8 WS-9 WS-10 WS-11 

αi 60% 59% 58% 57% 56% 55% 54% 53% 52% 51% 50% 

β 0.458 0.458 0.446 0.444 0.444 0.438 0.432 0.429 0.429 0.429 0.429 

RE 0.96% 0.96% 0.96% 0.96% 0.96% 0.96% 0.95% 0.95% 0.95% 0.95% 0.95% 

SD 7.67% 7.67% 8.16% 8.05% 8.05% 8.38% 8.36% 8.32% 8.32% 8.32% 8.32% 

R 2.52% 2.52% 2.65% 3.85% 4.03% 5.34% 5.73% 5.73% 5.73% 5.73% 5.73% 

SR 0.202 0.203 0.206 0.358 0.358 0.366 0.525 0.575 0.575 0.575 0.575 

N 11 11 11 10 10 10 9 8 8 8 8 

AAR 5.58% 5.58% 5.42% 6.62% 6.62% 7.24% 8.91% 9.16% 9.16% 9.16% 9.16% 

 
 

The main discussion shows the importance of information taken from periods of market crisis and 

recession and how this information contributes to robust portfolio optimization. Tables 5 and 6 analyze 

and compare the TS optimized portfolios (portfolios TS-1 to TS-11) and WS optimized portfolios 

(portfolios WS- 1 to WS-11). The portfolios are compared in pairs according to the αi value adopted. 

It is important to highlight that the WS optimized portfolios had better results when reading the 

Sharpe ratio (SR) considering different αi values. 

Tables 5 and 6 present the expected return values for the portfolios that were calculated as 

presented before. We needed to calculate the beta values (β) for each of the portfolios (also shown in the 

Tables). For the TS optimized portfolios (TS-1 to TS-11), the expected returns (RE) vary from 1.03% to 

1.09% a.m. For the WS optimized portfolios (WS-1 to WS-11), the expected returns (RE) were 

concentrated between 0.95% and 0.96% a.m. 

The obtained mean profitability (R) were -3.05%, -2.68%, -3.33%, -2.10%, -1.00%, -0.22%, 

0.35%, 0.39%, 2.10%, 1.54%, and 2.96% for TS-1 to TS-11, respectively. The obtained mean profitability 

(R) were 2.52%, 2.52%, 2.65%, 3.85%, 4.03%, 5.34%, 5.73%, 5.73%, 5.73%, 5.73%, and 5.73% for WS-

1 to WS-11, respectively. 

The accumulated abnormal return (AAR) of the portfolios was obtained from information 

collected during the validation period. The portfolios were compared in pairs, and one was optimized from 
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the TS (n = 1) period, and the other from the WS (n = 4) period. Figures 3 and 4 show the accumulated 

return in pairs established according to the probability level (1-αi) of fulfilling constraints from the 

CCDEA model. 

Figure 3 shows the AAR of the portfolio pairs when a risk range (αi) criterion of 60% to 55% is 

adopted. Figure 4 shows the AAR of the portfolio pairs when a risk range (αi) criterion of 54% to 50% is 

adopted.  

 

FIGURE 3. Accumulated return of the pairs of portfolios considering risk criterion variation (60% - 55%). 
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FIGURE 4. Accumulated return of the pairs of portfolios considering risk criterion variation (54% - 50%). 

 
It is important to observe that the WS optimized portfolios (WS-1 to WS-11) had better SR values. 

Regardless of the risk criterion adopted, the beta values of the proposed portfolios were lower than 

portfolios TS-1 to TS-11. Kim et al. (2015), conclude that robust portfolios optimized using stochastic 

models, achieve expected robustness since they focus mainly on crisis period information. The authors 

believe that these robust portfolios tend to comprise assets with low beta values. Most importantly, these 

assets tend to perform better when compared to high beta value assets in any other period classification.  

After developing the accumulated return graphs, we conducted a statistical test to compare the 

obtained series of abnormal accumulated returns for each pair of portfolios associated by the risk criterion. 

We decided to use the Mann-Whitney non-parametric test. The P-value results obtained in these tests 

(when portfolios are analyzed in pairs) were less than 0.05. This result allows us to affirm that the 

abnormal accumulated return of WS optimized portfolios is statistically higher than the accumulated 
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returns of TS optimized portfolios for the entire period. Figure 5 presents a boxplot diagram for the pairs 

of portfolios associated by the risk criterion. 

 

 

 

FIGURE 5. Boxplot of the accumulated returns from pairs of portfolios, by risk criterion (60% - 50%). 

 
The results have shown that the proposed method supplied with WS information has better results 

than TS information for the total period. 
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However, to confirm the applicability of this method, we needed to compare these portfolios with 

other portfolios build using classic models for portfolio optimization. Models presented by Markowitz 

(1952), and Sharpe (1963), were used for this comparison. 

TS (n=1) information assets were ideally allocated using the Markowitz (1952) model and by 

maximizing the Sharpe ratio of the assets. This portfolio was named the Comparative Markowitz (MC) 

portfolio. Using the same set of information, assets were ideally allocated using the Sharpe model (1963). 

This portfolio was named the Comparative Sharpe (SC) portfolio. Table 7 shows the share of assets in the 

comparative portfolios. Additionally, the shares are again presented for four of the eleven proposed 

portfolios, with two of them (TS-1 and TS-11) supplied with the same set of information as the 

Comparative portfolios, and two other portfolios (WS-1 and WS-11) from WS (n=4) market periods. For 

this comparison, we chose to consider only portfolios with risk criteria 60% and 50%, which are limit 

values for the adopted range. 

TABLE 7- Assets allocation in the comparative and proposed portfolios 

(αi) - - 60% 60% 50% 50% 

Portfolios MC SC TS-1 WS-1 TS-11 WS-11 

DMU1 0.171 0.046 0.046 0.176 0.139 0.235 

DMU2 0.000 0.014 0.015 0.000 0.061 0.000 

DMU3 0.000 0.025 0.025 - - - 

DMU4 0.000 0.024 0.024 0.000 0.091 0.000 

DMU5 0.000 0.007 0.008 0.000 - - 

DMU6 0.090 0.038 0.038 0.093 - - 

DMU7 0.000 0.017 0.017 0.000 - - 

DMU8 0.000 0.017 0.017 - - - 

DMU9 0.000 0.012 0.013 - - - 

DMU10 0.000 0.027 0.028 - - - 

DMU11 0.000 0.017 0.017 0.027 0.063 0.067 

DMU12 0.120 0.033 0.033 0.095 0.096 0.127 

DMU13 0.000 0.020 0.021 0.056 0.074 0.101 

DMU14 0.000 0.028 0.029 - - - 

DMU15 0.000 0.019 0.019 0.041 - - 

DMU16 0.014 0.029 0.030 - - - 

DMU17 0.000 0.022 0.023 - - - 

DMU18 0.000 0.003 0.003 - - - 

DMU19 0.103 0.032 0.032 - - - 

DMU20 0.000 0.006 0.007 - - - 
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DMU21 0.000 0.013 - - - - 

DMU22 0.000 0.004 0.004 0.000 - - 

DMU23 0.000 0.006 0.007 0.000 - - 

DMU24 0.000 0.004 0.004 0.000 0.046 0.019 

DMU25 0.083 0.027 0.027 - - - 

DMU26 0.000 0.020 0.020 0.097 - - 

DMU27 0.106 0.028 0.028 - - - 

DMU28 0.000 0.011 0.011 - - - 

DMU29 0.000 0.012 0.012 0.000 - - 

DMU30 0.000 0.001 0.001 - - - 

DMU31 0.000 0.006 0.006 - - - 

DMU32 0.000 0.006 0.006 - - - 

DMU33 0.000 0.005 0.005 - - - 

DMU34 0.032 0.023 0.023 - - - 

DMU35 0.000 0.012 0.012 0.000 - - 

DMU36 0.000 0.021 0.021 0.000 - - 

DMU37 0.000 0.021 0.021 0.000 - 0.000 

DMU38 0.000 0.010 0.010 0.000 - - 

DMU39 0.000 0.021 0.022 - - - 

DMU40 0.000 0.021 0.021 0.045 - - 

DMU41 0.000 0.021 0.021 - - - 

DMU42 0.000 0.003 0.003 - - - 

DMU43 0.000 0.006 0.006 - - - 

DMU44 0.000 0.020 0.021 - - - 

DMU45 0.000 0.000 0.000 0.000 - - 

DMU46 0.017 0.029 0.029 - - - 

DMU47 0.000 0.000 0.000 - - - 

DMU48 0.000 0.003 0.003 - - - 

DMU49 0.000 0.005 0.005 0.000 0.046 0.000 

DMU50 0.042 0.023 0.024 - - - 

DMU51 0.000 0.022 0.022 - - - 

DMU52 0.000 0.000 0.000 - - - 

DMU53 0.000 0.013 0.013 - - - 

DMU54 0.000 0.023 0.023 0.046 - - 

DMU55 0.000 0.011 0.011 0.000 0.050 0.015 

DMU56 0.043 0.038 0.038 0.166 0.134 0.214 

DMU57 0.000 0.020 0.020 - - - 

DMU58 0.169 0.001 0.001 0.000 - - 

DMU59 0.009 0.011 0.011 0.000 - - 

DMU60 0.000 0.011 0.012 0.000 0.077 0.000 

DMU61 0.000 0.033 0.034 0.158 0.123 0.222 

 

The same validation period employed in the previous comparison was used to validate the results 

obtained in the portfolios. 
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Table 8 shows some parameters for the proposed portfolios (TS-1, TS-11, WS-1, and WS-11) and 

the comparative portfolios (MC and SC), like the adopted risk (αi), the portfolio beta (β), the return results 

(RE and R), the standard deviation (SD), the Sharpe ratio (SR), and the number of assets (N) that comprise 

the portfolio. 

TABLE 8 - Results for comparative portfolios and proposed portfolios 

  MC SC TS-1 WS-1 TS-11 WS-11 

αi - - 60% 60% 50% 50% 

β 0.475 0.702 0.702 0.458 0.616 0.429 

RE 0.96% 0.96% 0.96% 0.96% 0.95% 0.95% 

SD 7.20% 8.60 % 8.80% 7.67% 9.65% 8.32% 

R -1.00% -3.00% -3.00% 2.52% 2.96% 5.73% 

SR -0.272 -0.460 -0.467 0.202 0.200 0.575 

N 13 58 57 11 12 8 

AAR 1.35% -1.57% -1.59% 5.58% 9.31% 9.16% 

 

The previous analysis already showed the advantage of using WS information when optimizing 

robust portfolios. However, here the optimized portfolios are compared using efficiency stochastic 

analysis using CCDEA associated to the hierarchical grouping and Sharpe's proposal for optimized 

Comparative portfolios using classic and deterministic models for portfolio optimization. 

It is noteworthy that the Comparative Markowitz portfolios (MC) and Comparative Sharpe 

portfolios (SC) had only 13 and 58 assets after the optimization, and SRs equal to -0.272 and -0.460, 

respectively. Again, we see that WS optimized portfolios perform better. 

Portfolios WS-1 and WS-11 had beta values equal to 0.458 and 0.429, while Comparative 

portfolios MC and SC had beta values equal to 0.475 and 0.702. 

The cumulative return for the portfolios (AAR) was obtained based on the information from the 

period considered in the validation. Again, the results shown in Table 8 show abnormal returns. Figure 6 

shows the accumulated returns for the analyzed portfolios. 

Figure 6 (a) shows the accumulated returns of the proposed portfolios (when a risk criterion 

(αi)=60% is adopted) and the comparative portfolios: MC, SC, and the Ibovespa Brazil Sao Paulo Stock 
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Exchange Index (BVSP). Figure 6 (b) shows the accumulated return for proposed portfolios (when a risk 

criterion (αi)=50% is adopted) and the same comparative portfolios. 

 

FIGURE 6. Accumulated return of proposed and comparative portfolios. 

After presenting the accumulated return graphs, we performed a statistical test for the comparison 

between the series of accumulated returns obtained for the analyzed portfolios. We used the Kruskal-

Wallis test (one-way analysis of variance), which allowed us to determine whether the medians of two or 

more groups differed. The P-value results obtained were less than 0.05. We see that the accumulated 

returns of WS optimized portfolios (WS-1 and WS-11) are statistically higher than the accumulated 

returns of TS optimized portfolios (TS-1 and TS-11), when using the same risk criterion. They are also 

statistically higher than the accumulated returns of the BVSP, MC and SC comparative portfolios. 

Figure 7 shows the boxplot diagram of the analyzed portfolios. 
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FIGURE 7. Boxplot diagram for proposed and comparative portfolios. 

 

6. CONCLUSIONS 

We were able to reduce the search space when identifying efficient assets. This study used 

stochastic information for the different adopted variables. Subsequently, the efficient assets were 

submitted to approaches that promoted ideal asset allocation within the portfolios. It is interesting to note 

that both commonly used and fundamentalist variables were considered in the asset allocation. 

We identified that it is possible to represent more flexible models by considering the different risk 

profiles of investors (conservative or risky) by varying the probability of meeting the constraints (1-αi) in 

the CCDEA model. The more rigorous one is when fulfilling these constraints, the smaller the resulting 

values in the efficiency analysis, resulting in fewer efficient assets. 

Varying the risk criterion (αi) between the 0.5 and 0.6, which varied in units of 0.01, allowed us to 

better discriminate the analysis units. We were able to build eleven portfolios for each adopted scenario, 

TS-1 to TS-11 for Total Market State (TS) information, and WS-1 to WS-11 for Worst-Case Scenario 

(WS) information. Additionally, we used Comparative Markowitz (MC) and Comparative Sharpe 

portfolios (SC), optimized from classic portfolio optimization models, as proposed by Markowitz (1952), 

and Sharpe (1963). These portfolios were supplied with information without any regard to differentiation 

in market states. 
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When portfolios TS-1 to TS-11 were compared to portfolios WS-1 to WS-11, WS optimized 

portfolios performed better according to the Sharpe ratio (SR) for the validation period. These results are in 

alignment with the notion that robust optimization for building robust portfolios should specifically 

concentrate on information obtained in Worst-Case scenarios (Kim et al., 2015).  

In general, portfolios formed using our proposed method (WS-1 to WS-11) performed better as 

measured by the Sharpe ratio (SR), and according to the accumulation of abnormal returns in the 

validation period. The averages of the series of abnormal returns were statistically higher than for the 

comparative portfolios. 

Another important fact worth emphasizing is that the WS optimized portfolios had lower beta 

values compared to TS optimized portfolios and the MC and SC Comparative portfolios. Robust 

optimization portfolios tend to comprise assets with lower beta values that perform well under any market 

state (bull or bear market). 

The Data Enveloping Analysis (DEA) is already being used for portfolio optimization, and we can 

see that the stochastic approach of Chance Constrained Data Envelopment Analysis (CCDEA) helps 

reduce the search space for efficient assets considering different variables. Hierarchical Clustering allowed 

us to better discriminate the data submitted to the CCDEA model, even with a reduction to the risk 

criterion. 

Finally, we suggested that this proposed method be applied to different stock markets, to more 

mature stock markets, to more assets, with data coming from longer historical series, and to validate data 

from different periods. We also suggest that future research compare this proposed method with other 

methods of robust portfolio optimization. 

Acknowledgments 

This paper is part of a project GEOCEP that has received funding from the European Union’s Horizon 2020 

research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 870245. The authors would like 

to thank the Brazilian National Council for Scientific and Technological Development - CNPq Brazil (Processes 



 28 

406769/2018-4, 308021/2019-3, 302751/2020-3, and 303909/2020-0), the Minas Gerais Research Funding Foundation - 

FAPEMIG Brazil (Process APQ-00378-21), and the Coordination for the Improvement of Higher Education Personnel - 

Capes Brazil. The authors also thank the Czech Science Foundation - Czech Republic (grant number 22-19617S) for the 

financial support and research incentive. The views expressed here are those of the authors and not necessarily those of our 

institutions. All remaining errors are solely our responsibility. 

Conflicts of Interest 

The authors declare that there are no conflicts of interest regarding the publication of this paper. 

REFERENCES 

Adam, L., & Branda, M. (2021). Risk-aversion in data envelopment analysis models with diversification. Omega (United 

Kingdom), 102, 102338. https://doi.org/10.1016/j.omega.2020.102338 

Amin, G. R., & Hajjami, M. (2020). Improving DEA cross-efficiency optimization in portfolio selection. Expert Systems 

with Applications, 114280. https://doi.org/10.1016/j.eswa.2020.114280 

Ashrafi, H., & Thiele, C. (2021). A study of robust portfolio optimization with European options using polyhedral 

uncertainty sets. 8. https://doi.org/10.1016/j.orp.2021.100178 

Azadi, M., Jafarian, M., Saen, R. F., & Mirhedayatian, S. M. (2015). A new fuzzy DEA model for evaluation of efficiency 

and effectiveness of suppliers in sustainable supply chain management context. Computers and Operations Research, 

54, 274–285. https://doi.org/10.1016/j.cor.2014.03.002 

Azadi, M., & Saen, R. F. (2012). Developing a new chance-constrained DEA model for suppliers selection in the presence of 

undesirable outputs. International Journal of Operational Research, 13(1), 44–66. 

https://doi.org/10.1504/IJOR.2012.044027 

Azadi, M., Saen, R. F., & Tavana, M. (2012). Supplier selection using chance-constrained data envelopment analysis with 

non-discretionary factors and stochastic data. International Journal of Industrial and Systems Engineering, 10(2), 167–

196. https://doi.org/10.1504/IJISE.2012.045179 

Baltas, I., & Yannacopoulos, A. N. (2019). Portfolio management in a stochastic factor model under the existence of private 

information. IMA Journal of Management Mathematics, 30(1), 77–103. https://doi.org/10.1093/imaman/dpx012 

Black, F., & Litterman, R. (1992). Global Portfolio Optimization. Financial Analysts Journal, 48(5), 28–43. 

https://doi.org/10.2469/faj.v48.n5.28 

Chakrabarti, D. (2021). Parameter-free robust optimization for the maximum-Sharpe portfolio problem. European Journal of 

Operational Research. https://doi.org/10.1016/j.ejor.2020.11.052 

Charnes, A., & Cooper, W. W. (1959). Chance-Constrained Programming. August 2015. 

Charnes, A., & Cooper, W. W. (1963). Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints. 

Operations Research, 11(1), 18–39. https://doi.org/10.1287/opre.11.1.18 

Chen, C., Liu, D., Xian, L., Pan, L., Wang, L., Yang, M., & Quan, L. (2020). Best-case scenario robust portfolio for energy 

stock market. Energy, 213, 118664. https://doi.org/10.1016/j.energy.2020.118664 



 29 

Choi, H. S., & Min, D. (2017). Efficiency of well-diversified portfolios: Evidence from data envelopment analysis. Omega 

(United Kingdom), 73, 104–113. https://doi.org/10.1016/j.omega.2016.12.008 

Cook, W., & Zhu, J. (2014). Data Envelopment Analysis – A Handbook on the modeling of internal structures and networks. 

Springer International Publishing. 

Cooper, W. W., Huang, Z., & Li, S. X. (1996). Satisficing DEA models under chance constraints. Annals of Operations 

Research, 66, 279–295. https://doi.org/10.1007/BF02187302 

Cooper, W. W., Seiford, L. M., & Tone, K. (2002). Data Envelopment Analysis: A comprehensive text with models, 

applications, references and DEA-Solver Software. In K. A. Publishers (Ed.), Journal of Chemical Information and 

Modeling (1st ed., Vol. 53, Issue 9). 

Cooper, W. W., Seiford, L., & Tone, K. (2007). Data envelopment analysis: a comprehensive text with models, application, 

references and DEA-Solver Software. Springer International Publishing. 

Edirisinghe, N. C. P., & Zhang, X. (2010). Input/output selection in DEA under expert information, with application to 

financial markets. European Journal of Operational Research, 207(3), 1669–1678. 

https://doi.org/10.1016/j.ejor.2010.06.027 

Emrouznejad, A., & Tavana, M. (2014). Peformance Measurement with Fuzzy Data Envelopment Analysis. Springer 

International Publishing. 

Fabozzi, F. J., Huang, D., & Zhou, G. (2010). Robust portfolios: Contributions from operations research and finance. Annals 

of Operations Research, 176(1), 191–220. https://doi.org/10.1007/s10479-009-0515-6 

Fabozzi, F. J., Kolm, P. N., Pachamanova, D. A., & Focardi, S. M. (2007). Robust Portfolio Optimization. The Journal of 

Portfolio Management, 33(3), 40–48. https://doi.org/10.3905/jpm.2007.684751 

Farzipoor Saen, R., & Azadi, M. (2011). A chance-constrained data envelopment analysis approach for strategy selection. 

Journal of Modelling in Management, 6(2), 200–214. https://doi.org/10.1108/17465661111149584 

Homm, U., & Pigorsch, C. (2012). Beyond the Sharpe ratio: An application of the Aumann-Serrano index to performance 

measurement. Journal of Banking and Finance, 36(8), 2274–2284. https://doi.org/10.1016/j.jbankfin.2012.04.005 

Jin, J., Zhou, D., & Zhou, P. (2014). Measuring environmental performance with stochastic environmental DEA: The case of 

APEC economies. Economic Modelling, 38, 80–86. https://doi.org/10.1016/j.econmod.2013.12.017 

Kao, C. (2014). Efficiency decomposition for general multi-stage systems in data envelopment analysis. European Journal 

of Operational Research, 232(1), 117–124. https://doi.org/10.1016/j.ejor.2013.07.012 

Kim, J. H., Kim, W. C., & Fabozzi, F. J. (2014). Recent Developments in Robust Portfolios with a Worst-Case Approach. 

Journal of Optimization Theory and Applications, 161(1), 103–121. https://doi.org/10.1007/s10957-013-0329-1 

Kim, J. H., Kim, W. C., & Fabozzi, F. J. (2018). Recent advancements in robust optimization for investment management. 

Annals of Operations Research, 266(1–2), 183–198. https://doi.org/10.1007/s10479-017-2573-5 

Kim, W. C., Kim, J. H., Mulvey, J. M., & Fabozzi, F. J. (2015). Focusing on the worst state for robust investing. 

International Review of Financial Analysis, 39, 19–31. https://doi.org/10.1016/j.irfa.2015.02.001 

Kourtis, A. (2016). The Sharpe ratio of estimated efficient portfolios. Finance Research Letters, 17, 72–78. 

https://doi.org/10.1016/j.frl.2016.01.009 



 30 

Leung, P.-L., Ng, H.-Y., & Wong, W.-K. (2012). An improved estimation to make Markowitz’s portfolio optimization 

theory users friendly and estimation accurate with application on the US stock market investment. European Journal of 

Operational Research, 222(1), 85–95. https://doi.org/10.1016/j.ejor.2012.04.003 

Levy, H., & Levy, M. (2014). The benefits of differential variance-based constraints in portfolio optimization. European 

Journal of Operational Research, 234(2), 372–381. https://doi.org/10.1016/j.ejor.2013.04.019 

Lim, S., Oh, K. W., & Zhu, J. (2014). Use of DEA cross-efficiency evaluation in portfolio selection: An application to 

Korean stock market. European Journal of Operational Research, 236(1), 361–368. 

https://doi.org/10.1016/j.ejor.2013.12.002 

Markowitz, H. (1952). PORTFOLIO SELECTION*. The Journal of Finance, 7(1), 77–91. https://doi.org/10.1111/j.1540-

6261.1952.tb01525.x 

Markowitz, H. (2014). Mean–variance approximations to expected utility. European Journal of Operational Research, 

234(2), 346–355. https://doi.org/10.1016/j.ejor.2012.08.023 

Myers, R., Montgomery, D. ., & Anderson-Cook, C. (2009). Response Surface Methodology: Process and Product 

Optimization Using Designed Experiments (John Wiley & Sons (ed.); 3rd ed.). Hoboken. 

Powers, J., & Mcmullen, P. (2002). No Title. Journal of Business and Management, 7(2), 31–42. 

Rotela Junior, P, Pamplona, E. O., & Salomon, F. R. (2014). Otimização de Portfólios: Análise de Eficiência. Revista de 

Administração de Empresas, 54(4), 405–413. https://doi.org/10.1590/S0034-759020140406 

Rotela Junior, Paulo, Pamplona, E. de O., Rocha, L. C. S., Valerio, V. E. de M., & Paiva, A. P. (2015). Stochastic portfolio 

optimization using efficiency evaluation. Management Decision, 53(8), 1698–1713. https://doi.org/10.1108/MD-11-

2014-0644 

Sehgal, R., & Mehra, A. (2020). Robust portfolio optimization with second order stochastic dominance constraints. 

Computers and Industrial Engineering, 144(January), 106396. https://doi.org/10.1016/j.cie.2020.106396 

Sengupta, J. K. (1987). Data envelopment analysis for efficiency measurement in the stochastic case. Computers and 

Operations Research, 14(2), 117–129. https://doi.org/10.1016/0305-0548(87)90004-9 

Sharpe, W. F. (1963). A Simplified Model for Portfolio Analysis. Management Science, 9(2), 277–293. 

https://doi.org/10.1287/mnsc.9.2.277 

Sharpe, W. F. (1964). Capital Asset Prices: a Theory of Market Equilibrium Under Conditions of Risk. The Journal of 

Finance, 19(3), 425–442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x 

Shi, H. L., & Wang, Y. M. (2020). A Merger and Acquisition Matching Method That Considers Irrational Behavior from a 

Performance Perspective. IEEE Access, 8, 45726–45737. https://doi.org/10.1109/ACCESS.2020.2976608 

Siriopoulos, C., & Tziogkidis, P. (2010). How do Greek banking institutions react after significant events?-A DEA approach. 

Omega, 38(5), 294–308. https://doi.org/10.1016/j.omega.2009.06.001 

Won, J.-H., & Kim, S.-J. (2020). Robust trade-off portfolio selection. Optimization and Engineering, 21(3), 867–904. 

https://doi.org/10.1007/s11081-020-09485-z 

Xidonas, P., Mavrotas, G., Hassapis, C., & Zopounidis, C. (2017). Robust multiobjective portfolio optimization: A minimax 

regret approach. European Journal of Operational Research, 262(1), 299–305. 



 31 

https://doi.org/10.1016/j.ejor.2017.03.041 

Xidonas, P., Steuer, R., & Hassapis, C. (2020). Robust portfolio optimization: a categorized bibliographic review. Annals of 

Operations Research, 292(1), 533–552. https://doi.org/10.1007/s10479-020-03630-8 

Yu, J.-R., Chiou, W.-J. P., Lee, W.-Y., & Chuang, T.-Y. (2019). Realized performance of robust portfolios: Worst-case 

Omega vs. CVaR-related models. Computers & Operations Research, 104, 239–255. 

https://doi.org/10.1016/j.cor.2018.12.004 

 

 



 

IES Working Paper Series 
 

2022 
1. Klara Kantova: Parental Involvement and Education Outcomes of Their 

Children 
2. Gabriel Nasser, Doile de Doyle, Paulo Rotella Junior, Luiz Célio Souza Rocha, 

Priscila França Gonzaga Carneiro, Rogério Santana Peruchi, Karel Janda, 
Giancarlo Aquila: Impact of Regulatory Changes on Economic Feasibility of 
Distributed Generation Solar Units 

3. Paulo Rotella Junior, Luiz Célio Souza Rocha, Rogério Santana Peruchi, 
Giancarlo Aquila, Karel Janda, Edson de Oliveira Pamplona: Robust Portfolio 
Optimization: A Stochastic Evaluation of Worst-Case Scenarios 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All papers can be downloaded at: http://ies.fsv.cuni.cz • 

 

 
Univerzita Karlova v Praze, Fakulta sociálních věd 

Institut ekonomických studií [UK FSV – IES]  Praha 1, Opletalova 26 
E-mail : ies@fsv.cuni.cz       http://ies.fsv.cuni.cz 

http://ies.fsv.cuni.cz/
mailto:IES@Mbox.FSV.CUNI.CZ

	wp_2022_03_B
	wp_2022_03_C
	wp_2022_03_D
	wp_2022_03_E

