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Abstract: 
Meta-analysis upweights studies reporting lower standard errors and hence more 
preci- sion. But in empirical practice, notably in observational research, precision is 
not given to the researcher. Precision must be estimated, and thus can be p-hacked 
to achieve statistical significance. Simulations show that a modest dose of spurious 
precision creates a formidable problem for inverse-variance weighting and bias-
correction methods based on the funnel plot. Selection models fail to solve the 
problem, and the simple mean can beat sophisticated estimators. Cures to 
publication bias may become worse than the disease. We introduce an approach that 
surmounts spuriousness: the Meta-Analysis Instrumental Variable Estimator 
(MAIVE), which employs inverse sample size as an instrument for reported 
variance. 
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1 Introduction

Inverse-variance weighting reigns in meta-analysis.1 More precise studies, or rather those seem-

ingly more precise based on lower reported standard errors, get upweighted explicitly or im-

plicitly. The weight is explicit in traditional summaries: the fixed-effect model (assuming a

common effect) and the random-effects model (allowing for heterogeneity).2,3 These models are

weighted averages, the weight diluted in random effects by a heterogeneity term. The weight

is also explicit in publication bias correction models based on the funnel plot.4–12 In funnel-

based models, precision is particularly important because the weighted average gets reinforced

by assigning more importance to supposedly less biased (nominally more precise) studies. The

weight is implicit in selection models estimated using the maximum likelihood approach,13–18

which often reduce to the random-effects model in the absence of publication bias.

The tacit assumption behind all these techniques is that the reported, nominal precision

represents the true, underlying precision. The standard error, inverse of precision, is given to

the researcher by her data and methods. It is fixed and cannot be manipulated, consciously

or unconsciously. The assumption is plausible in experimental research, for which most meta-

analysis methods were developed. But in observational research, where thousands of meta-

analyses are produced each year, the derivation of the standard error is often a key part of the

empirical exercise. Consider a regression analysis with longitudinal data: explaining the health

outcomes of patients treated by different physicians and observed over several years. Individual

observations are not independent, and standard errors need to be clustered.19 But how? At

the level of physicians, patients, or years? Should one use double clustering20 or perhaps wild

bootstrap21? It is complicated, and with a different computation of confidence intervals the

researcher will report different precision for the same estimated effect size.

Spurious precision can arise in many contexts other than longitudinal data analysis. Or-

dinary least squares, the workhorse of observational research, assume homoskedasticity of residu-

als. The assumption is often violated, and in these cases researchers should use heteroskedasticity-

robust standard errors,22 typically larger than plain vanilla standard errors. If researchers ignore

heteroskedasticity, they report precise estimates, but the precision is spurious. Similar prob-

lems may arise due to nonstationarity in time series23 and a myriad of other issues. When

a study with exaggerated precision enters meta-analysis, it gets too much impact because of

inverse-variance weighting. If a meta-analyst spots the methodological problem, she can exclude

the study or add a corresponding control. Either way, the weighting problem is not properly

addressed. And spotting misspecification is hard, because the tweak lifting reported precision

can be hidden within a complex model.

Spurious precision can also arise due to cheating. For economics journals, quasi-experimental

evidence shows that obligatory data sharing reduced the reported t-statistics.24 Prior to the

introduction of data sharing some authors had probably cheated by manipulating data or results.

Pütz and Bruns25 find hundreds of reporting errors in top economics journals; when they ask

authors to explain the errors, the authors are four times more likely to admit a mistake in

the standard error than in the estimated effect size. But cheating, mistakes, and other issues
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that can affect the standard error independently of the estimated effect size are unnecessary to

produce spurious precision. A realistic mechanism is p-hacking, in which the researcher adjusts

the entire model to produce statistically significant results. After adjusting the model, both the

effect size and standard error change, and both can jointly contribute to statistical significance.

We examine, by employing Monte Carlo simulations, the consequences of cheating and the more

realistic p-hacking behavior, of which spurious precision is a natural result.

Figure 1: Two flavors of selection and repercussions for conventional meta-analysis

(a) Selection on estimates (E-selection) (b) Selection on standard errors (SE-selection)
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Notes: Blue-filled circles (lighter in grayscale) denote estimates statistically significant at the 5% level. The
significant estimates are reported. Hollow circles denote insignificant estimates, which are not reported but p-
hacked to yield statistical significance (black-filled circles). In the left-hand panel the resulting mean of reported
estimates is biased upwards, and inverse-variance weighting helps mitigate the bias. In the right-hand panel the
resulting mean is unbiased, and inverse-variance weighting introduces a downward bias. A realistic scenario of
p-hacking combines both types of selection, so the p-hacked estimates move not strictly north or west (as in the
figure) but northwest. The resulting bias direction due to inverse-variance weighting is ex ante unclear.

Figure 1 gives intuition on the cheating/clustering/heteroskedasticity/nonstationarity sim-

ulation. For brevity we call it a cheating scenario. Researchers crave statistically significant

estimates and to that effect manipulate effect sizes or standard errors at will, but not both at

the same time. The scenario is simplistic, and we start with it because it allows for a clean sepa-

ration of selection on estimates (conventional in the literature) and selection on standard errors

(our focus). The separation is not so clean in the p-hacking scenario, but can be mapped back

to the cheating scenario. The mechanism of the left-hand panel of Figure 1 is analogous to the

Lombard effect in psychoacoustics:26–28 speakers increase their vocal effort in response to noise.

Here researchers increase their selection effort in response to noise in data or methods, noise

that produces imprecision and insignificance. When researchers so cheat with effect sizes, the

results are consistent with funnel-based models of publication bias: funnel asymmetry arises,

the most precise estimates remain close to the true effect, and inverse-variance weighting helps
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mitigate the bias—aside from improving the efficiency of the aggregate estimate, the original

rationale for using the weights.29,30

The right-hand panel of Figure 1 paints a different picture. Here the mechanism is analogous

to Taylor’s law in ecology:31,32 variance can decrease with a smaller mean (originally describing

population density for various species). When researchers achieve statistical significance by

lowering the standard error, we again observe funnel asymmetry. But this time no bias arises

in the reported effect sizes: the black-filled circles and the hollow circles denote the same effect

size, only precision changes. The simple unweighted mean of reported estimates is unbiased,

and inverse-variance weighting creates a downward bias. The bias increases when we use a

correction based on the funnel plot: effectively, when we estimate the size of a hypothetical

infinitely precise estimate, the intercept of a regression curve.

In practice, as noted, selection on estimates and standard errors arises simultaneously. We

generate this quality in simulations by allowing researchers to replace control variables in a

regression context, a mechanism that also creates sizable heterogeneity. Control variables are

correlated with the main regressor of interest (treatment), and their replacement affects both

the estimated treatment effect and the corresponding precision. Then p-hacked estimates move

not strictly north or west, as in the figure, but northwest. Even spuriously large estimates can

be spuriously precise. The resulting bias direction due to inverse-variance weighting is unclear.

Our simulations suggest that an upwards bias in conventional estimators is plausible.

Does any technique yield little bias and good coverage rates in the case of panel B of Figure 1,

or at least with a small ratio of selection on standard errors? We examine 7 current estimators:

simple unweighted mean, fixed effects (weighted least squares, FE/WLS),33 precision-effect test

and precision-effect estimate with standard errors (PET-PEESE),9 endogenous kink (EK),11

weighted average of adequately powered estimates (WAAP),10 the selection model by Andrews

and Kasy,17 and p-uniform∗ 18. The first two are basic summary statistics, the next three

are correction methods based on the funnel plot, and the last two are selection models. The

choice of estimators is subjective, but the three funnel-based techniques are commonly used in

observational research.34–41 The two selection models are also used often42–49 and represent the

latest incarnations of models in the tradition of Hedges13–16 and their simplifications50–55.

None of these 7 estimators work well with even a sprinkle of spurious precision. The simple

unweighted mean is often the best, but still no good. The reader might expect selection models

to beat funnel-based models, because of the latter’s heavier reliance on precision. This is

generally not the case, and even selection models are often beaten by the simple mean when

selection on standard errors is non-negligible (about 1:5 and more compared to selection on

estimates). We propose a straightforward adjustment of funnel-based techniques, the meta-

analysis instrumental variable estimator (MAIVE), which corrects most of the bias and restores

valid coverage rates. MAIVE replaces, in all meta-analysis contexts, reported variance with the

portion of reported variance that can be explained by inverse sample size used in the primary

study. We justify the idea by starting with a version of the Egger regression:4

α̂i = α0 + βSE(α̂)2i + vi, (1)
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where α̂ denotes effects estimated in primary studies and SE their standard errors. This is the

PEESE model due to Stanley and Doucouliagos, but for simplicity without additional inverse-

variance weights—since the model searches for the effect conditional on maximum precision, it

already features an implicit, built-in weight. In panel A of Figure 1, the quadratic regression

would fit the data quite well,9 and estimated α0 would lie close to the mean underlying effect.

In panel B, however, the regression fails to recover the underlying coefficients. The regression

fails because it assumes a causal effect of the standard error on the estimate: a good description

of panel A (Lombard effect), but not of panel B (Taylor’s law). In panel B, the standard error

sometimes depends on the estimated effect size, and is thus correlated with the error term, vi.

The resulting estimates of α0 (true effect) and β (intensity of selection) are biased.

The problem is the correlation between SE and vi, which can arise for three reasons: First,

selective reporting on standard errors, which we simulate. Second, measurement error in SE.

This issue was mentioned in 2005 by Tom Stanley,56 who was the first to instrument the standard

error in meta-analysis. Nevertheless, Stanley did not discuss the adjustment of weights nor did

he pursue the idea further as a bias-correction estimator. We do not consider this source of

correlation. Third, the correlation can be caused by unobserved heterogeneity: some method

choices affect both estimates and standard errors, and some standardized meta-analysis effects

feature a mechanical correlation between both quantities.39 (A careless meta-analyst may also

mix estimates measured in different units.57) Our p-hacking simulation only partly addresses

this mechanism by allowing researchers to change control variables, which affect both estimates

and standard errors at the same time—a combination of panel A and panel B of Figure 1. In

other words, we model only some of the mechanisms which give rise to spurious precision.

The statistical solution to the problem, often called endogeneity, is to find an instrument for

the standard error. A valid instrument is correlated with the standard error, but not with the

error term (and thus unrelated to the three sources of endogeneity mentioned above). While

it is often challenging to find good instruments, here the answer beckons. By definition, SE2

is a linear function of the inverse of the sample size used in the primary study. The sample

size is plausibly robust to selection, or at least it is more difficult to collect more data than to

p-hack the standard error in order to achieve significance. The sample size is not estimated,

and so does not suffer from measurement error. The sample size is typically not affected by

changing methodology, certainly not by changing control variables. Some endogeneity may

remain if researchers correctly expecting smaller effects design larger experiments.44 But, at

least in observational research, authors often use as much data as available from the start.

Indeed, the sample size, unlike the standard error, is often given to the researcher: the very

word data means things given.

We regress the squared reported standard errors on the inverse sample size and plug the

fitted values instead of the variance to the right-hand side of Equation 1. Thence we obtain

the baseline MAIVE estimator. For the baseline MAIVE we choose the instrumented version of

PEESE without additional inverse-variance weights, because it works well in simulations. The

version with additional adjusted weights (again, using fitted values instead of reported precision)

5



has often similar performance—but is more complex, so we prefer the former, parsimonious

solution. In principle, any funnel-based technique (and the funnel plot itself) can be adjusted

by the procedure described above: just replace the standard error with the square root of

the fitted values. The adjustment helps the fixed-effect, WAAP, and endogenous kink model

to typically defeat both the simple unweighted mean and selection models in the presence of

spurious precision. MAIVE can be easily applied using our maive package in R.

Why not to simply replace variance with inverse sample size?39,58–60 While the replace-

ment would also address spurious precision, the instrumental approach has many advantages,

discussed in detail in Section 3. One advantage is flexibility: the instrumental approach can

incorporate other aspects of study design, on top of sample size, that affect standard errors.

Sample size will rarely form a perfect proxy for precision, and MAIVE can be extended by adding

instruments to improve the fit. Moreover, the instrumental approach remains statistically valid

even if the correlation between reported variance and inverse sample size is small.

The remainder of the manuscript is structured as follows. In Section 2 we briefly describe

how conventional estimators in meta-analysis use reported standard errors. Section 3 introduces

the meta-analysis instrumental variable estimator. Section 4 presents a simple simulation based

on cheating. Section 5 presents a more realistic simulation based on p-hacking. Section 6

concludes the paper. Appendix A and Appendix B provide additional simulation results.

2 Benchmark Estimators

We select 7 estimators, described in Table 1, to illustrate the impact of spurious precision. The

choice of estimators is inevitably subjective. More could be used, but that would clutter simu-

lation figures. We believe the 7 estimators represent the breadth of meta-analysis approaches.

We always try to include the latest correction method that corresponds to a particular line of

research—e.g., selection models in the tradition of Hedges—and has already been examined by

simulations and applications. As economists we are biased towards techniques frequently used

in economics meta-analyses. We include the Andrews and Kasy model among other reasons

(including performance in previous simulations61) because Isaiah Andrews won the 2021 John

Bates Clark Medal, the most prestigious award in economics after the Nobel Prize, explicitly

also for his work on publication bias correction models.17

The simple average is the only examined estimator unaffected by precision. The FE/WLS

estimator is the inverse-variance weighted version of the simple average. One could add random

effects, but since there the weight is diluted by the heterogeneity term, the results would always

lie between the simple average and FE, so random effects are less interesting for our simulations.

A worry about spurious precision will reinforce the case of random effects versus unadjusted FE

as a summary statistic, a choice otherwise depending on the nature of heterogeneity.62,63

The simple average and FE/WLS are summary statistics not primarily meant to correct

biases—though researchers note that FE/WLS helps attenuate publication bias.3,33,69 Of the 5

bias-correcting estimators, 3 are based on the funnel plot (PET-PEESE, EK, WAAP), and 2 are
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Table 1: The role of the standard error in 7 benchmark estimators

Estimator Weight Regressor Identification

Simple average
FE/WLS X
PET-PEESE X X
EK X X X
WAAP X X
Andrews & Kasy X X
p-uniform∗ X X

Notes: Simple average = unweighted mean. FE/WLS = fixed effect/weighted least
squares: mean weighted by inverse variance.33 PET-PEESE = precision-effect test
and precision-effect estimate with standard errors: selection is a quadratic function of
SE when true effect 6= 0.9 EK = endogenous kink: selection is a linear function of SE
for imprecise estimates, no selection for precise ones.11 WAAP = weighted average
of adequately powered estimates: only estimates with at least 80% power included.10

Andrews & Kasy = a selection model in the tradition of Hedges.17 p-uniform∗ = a
simplified selection model based on the principle that p-values should be uniformly
distributed at the true effect size.18 For tractability we do not consider promising
new approaches that combine other estimators, such as RoBMA.64–68

selection models (Andrews and Kasy, p-uniform∗). PET-PEESE is a classical funnel technique

and can be understood as an extension of the Egger regression; it was shown to work well relative

to other estimators when compared to pre-registered replications.70 Regressions based on the

funnel plot effectively invoke inverse-variance weighting twice: first as an explicit weight, second

implicitly via the search for the mean effect conditional on maximum precision. Intuitively, such

an approach will be highly sensitive to spurious precision. EK is a model that can be understood

as a hybrid of funnel-based and selection model approaches71 because it estimates a threshold

for which estimates are selected no more. Since it follows funnel plot intuition and depends on

the same assumption, we group it together with funnel-based techniques. EK is the technique

theoretically most dependent on correctly reported precision: the standard error is used as a

weight, regressor, and identification threshold.

The last funnel-based technique, WAAP, is not a regression. It is based on FE/WLS,

but also uses the standard error to exclude studies that have low power (indirectly, that are

too imprecise). We understand WAAP as another way to estimate the top of the funnel, the

mean study implied by maximum precision. So WAAP, EK, and PET-PEESE share the same

underlying assumptions: 1) In the absence of publication bias, there is no correlation between

estimates and standard errors. 2) If there is publication bias, it works on the reported effect

size, not the standard error. The standard error is exogenous (given to the researcher) and

more precise (less noisy) estimates are less biased, as in the Lombard effect analogy laid out in

the Introduction. Note that, in addition to publication bias, the funnel-based techniques also

allow for p-hacking of effect sizes—if the p-hacking is a direct response to imprecision.

The selection models we consider, Andrews and Kasy and p-uniform∗, allow for joint selec-

tion on both estimates and standard errors, as long as the final selection criterion is the p-value.
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Andrews and Kasy is the latest selection model in the tradition of Hedges, while the p-uniform∗

is the latest version of selection model simplifications that are more parsimonious but less flex-

ible. Even more flexible selection models exist that allow for separate selection on estimates

and standard errors, irrespective of the p-value,72–74 but these are difficult to estimate in meta-

analyses of typical sizes and have so far been rarely used outside sensitivity analysis.75,76 From

the description above it might seem that selection models are immune to spurious precision.

Alas, not necessarily so: they are not robust to p-hacking. If individual results are not only

selectively chosen for publication but actively p-hacked, they are not individually unbiased.77

Reported (and thus potentially spurious) precision may add to the bias, because it is used as

a weight in maximum likelihood selection models. Both the Lombard effect and Taylor’s law

intuitions would then be inconsistent with selection models.

3 Meta-Analysis Instrumental Variable Estimator

The methodological recommendation of this paper is to replace the reported standard error

with the error’s portion explainable by sample size. That is, we only use variation in errors that

can be linked to variation in sample sizes. Because in most contexts the sample size is harder to

increase than the standard error is to p-hack, the adjusted measure is likely to better capture

the underlying precision. The variation in standard errors unrelated to variation in sample

sizes is more susceptible to p-hacking. Conventional estimators can be rid of the unrelated

variation, and the result is the meta-analysis instrumental variable estimator (MAIVE). As

noted, we choose the adjusted version of PET-PEESE as the baseline MAIVE. PEESE uses

squared standard errors, and so we instrument the reported variance with inverse sample size:

SE(α̂)2i = ψ0 + ψ1(1/Ni) + νi, (2)

where α̂ is the effect size reported in a primary study, ψ0 is a constant, Ni is the sample size of the

primary study, and νi is an error term that soaks up, among other things, the spurious elements

of the reported standard error related to p-hacking. Note that the approach is statistically

valid even if the link between SE(α̂)2 and (1/Ni) is weak, as long as there is any correlation.

The instrumented variance, to be used for adjusting current meta-analysis estimators, equals

ψ̂0 + ψ̂1(1/Ni). In addition to PEESE, squared standard errors are also used in conventional

inverse-variance weighting, so we find the quadratic specification natural. In estimators that

require the standard error without squaring (such as PET, the first stage of PET-PEESE), we

use

√
ψ̂0 + ψ̂1(1/Ni) for the adjustment of the standard error. Regressing in Equation 2 the

reported standard error on the inverse of the square root of sample size would cause only minor

quantitative changes; it is largely a matter of taste and aesthetics.

The idea of using an instrument for the standard error in meta-analysis goes back to Tom

Stanley in 2005.56 He notes that meta-regression techniques can suffer from attenuation bias,

the “iron law of econometrics,”48,78 because the reported standard errors on the right-hand

side are estimated standard deviations. When a regressor is measured with random noise, the
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estimated slope coefficient is biased downwards. Stanley uses the instrumental variable approach

to explore the robustness of funnel asymmetry tests, but does not employ it as an estimator of

the underlying effect nor does he adjust the weights—in his influential 2005 Journal of Economic

Surveys paper or any subsequent work. Because the foundational idea is due to Stanley, and

also the PEESE estimator we prefer for adjustment was developed by Stanley (together with

Doucouliagos),9 the MAIVE technique could just as well be called the Stanley estimator.

We believe that the attenuation problem is not important in meta-regression. Consider

the basic Egger regression, a linear regression of reported effect sizes on the reported standard

errors—for simplicity without weights. To our knowledge, this regression was first used by Card

and Krueger in their 1995 American Economic Review meta-analysis of the effect of minimum

wage on employment,79 a part of long-term research effort for which David Card won the 2021

Nobel Prize in economics. For attenuation bias to appear, the underlying relation needs to hold

between estimates and standard deviations. Then the right-hand variable in meta-regression, the

standard error, is a noisy version of the standard deviation. But the underlying relation really

holds for estimates and reported standard errors. What matters is the resulting t-statistic,

the ratio of estimates and standard errors. It follows that in the basic Card-Krueger-Egger

regression there should be no attenuation bias. Measurement error bias is perhaps possible via

inverse-variance weighting, or in models that combine meta-regression and selections models,

such as endogenous kink11. We do not consider this mechanism.

Instead, we focus on reverse causality (selection on standard errors, a possibility noted in

economics by Olken80) and omitted variables (resulting in p-hacking on both estimates and

standard errors). These two issues were not discussed by Stanley, but have since been raised

in footnotes by the co-authors of the present manuscript. Partial and imperfect versions of

MAIVE, with limited and scattered justification, have appeared as robustness checks in our

applied meta-analyses.23,48,81 The estimator we prefer, MAIVE version of PET-PEESE without

additional inverse-variance weights, has not been mentioned or used previously. Aside from

Stanley’s papers, we were inspired by the work of Egger et al.82, Schmidt et al.62, Hansen83,

and Nakagawa et al.39,84, who explicitly or implicitly refer to the possibility of spurious precision

in meta-analysis. Consider, for example, the following quote from Hansen, 2016, p. 1920:83

The weighting of studies according to estimated precision is particularly problematic

because the most unreliable estimates are also those with the least precise standard

errors, and some of them will be treated as reliable simply due to error in their

standard errors.

An obvious response to spurious precision could be to simply replace precision by a function

of sample size, a replacement mentioned by several researchers39,58–60. While this would also

remove spurious precision, the instrumental approach has 7 advantages. First, the underlying

causal relationship in Equation 1 is one between estimates and standard errors, not sample

size. The t-statistic is important. Second, the optimal meta-analysis weight is based on inverse

variance, not on sample size.29 Third, the correlation between precision and sample size is not

perfect. By using the instrumental variable approach, the confidence intervals can take into
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Table 2: Estimators and their MAIVE variants considered in simulations

Estimator Variants

Simple average (1) Unadjusted

FE/WLS (1) Unadjusted
(2) Adjusted weights

PET-PEESE (1) Unadjusted
(2) Adjusted weights
(3) Instrumented SEs
(4) Adjusted weights and instrumented SEs
(5) Instrumented SEs and no weights
(MAIVE baseline)

EK (1) Unadjusted
(2) Adjusted weights
(3) Instrumented SEs
(4) Adjusted weights and instrumented SEs
(5) Instrumented SEs and no weights

WAAP (1) Unadjusted
(2) Adjusted weights and SEs

Andrews & Kasy (1) Unadjusted
(2) Adjusted SEs

p-uniform∗ (1) Unadjusted
(2) Adjusted SEs

Notes: SE = standard error. MAIVE = meta-analysis instrumental variable es-
timator. Simple average = unweighted mean. FE/WLS = fixed effect/weighted
least squares: mean weighted by inverse variance. PET-PEESE = precision-
effect test and precision-effect estimate with standard errors: selection is a
quadratic function of the standard error.9 EK = endogenous kink: selection
is a linear function of the standard error for imprecise estimates, no selection
for precise estimates.11 WAAP = weighted average of adequately powered esti-
mates: only estimates with at least 80% power are included.10 Andrews & Kasy
= a selection model in the tradition of Hedges.17 p-uniform∗ = a simplified se-
lection model using the statistical principle that p-values should be uniformly
distributed at the true effect size.18

account that imperfect correlation in the first stage. Fourth, under classical assumptions, the

funnel plot with estimate size and precision is symmetrical in the absence of publication bias.

The assumptions are stronger for funnels that use sample size instead of precision.85

Fifth, the standard error is affected not only by sample size but also by estimation context.

Variables related to methodology can be used as instruments alongside sample size in MAIVE.

The technique is thus more flexible, though it may be challenging to find instruments uncorre-

lated with the meta-regression error term. Sixth, when the correlation between precision and

sample size is small, which may happen in observational research contexts (or in experimen-

tal research with poor randomization), the instrument can be weak. Statistical methods have

been developed to deal with weak instruments and ensure valid inference,86–89 an outcome not

guaranteed when we simply replace variance with inverse sample size in Equation 1. Seventh,

MAIVE automatically recomputes sample size to the units of precision reported by primary
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studies. This task can be achieved without the instrumental variable approach, but here the

process is automatic. In consequence, with MAIVE all meta-analysis techniques can proceed as

usual, now with a corrected measure of precision that is more likely than the reported, nominal

precision to reflect the underlying, true precision. The message of our paper is not that inverse-

variance weighting and funnel-based correction methods are wrong, but that they can be made

considerably more robust with little cost.

In Table 2 we list the versions of the 7 estimators employed in simulations. For the simple

average there is just one version, because the unweighted mean does not use the standard error

at all. For the remaining 6 estimators we adjust the inverse-variance weight using the fitted

value from the first-stage instrumental variable regression described above, creating the MAIVE

variants of these estimators. For FE/WLS, WAAP, Andrews and Kasy, and p-uniform∗ we have

just one version of adjustment: the standard error in these models is simply replaced with the

square root of the fitted value. For regression-based models (PET-PEESE and EK) we have

in total 5 variants: i) no adjustment, ii) adjusted weights, iii) instrumented standard errors in

the meta-regression but unadjusted weights, iv) adjusted weights and instrumented standard

errors, and v) instrumented standard errors and omitted weights. Meta-regression techniques

thus allow us to easily separate the effect of spurious precision on weighting and identification.

The separation is more difficult for selection models; the adjusted versions that we use for

selection models aggregate both effects and thus have weak statistical justification. This is an

important issue we return to in the Conclusion and highlight for future research.

4 Selection Based on Cheating

4.1 Simulation Setup

We simulate a meta-analysis environment where the object of interest is a regression coeffi-

cient. Striving for statistical significance, researchers engage in questionable research prac-

tices,90 which give rise to selection on estimates or standard errors. We consider two alterna-

tive selection mechanisms, one based on cheating and one based on p-hacking. In the cheating

selection environment, researchers unsatisfied with statistically insignificant results simply re-

place the obtained estimates or standard errors by fake values that are just enough to make the

estimate statistically significant. (We call this cheating but, as noted, the lower standard error

can be achieved via a different treatment of clustering, heteroskedasticity, or nonstationarity.)

Although admittedly simplistic, this selection mechanism allows us to conveniently control the

relative degree of selection entering through estimates and standard errors. Acknowledging

the limitations of this selection scenario as a description of researchers’ actual behavior, we

use it merely to highlight the qualitative implications of selection on standard errors for the

performance of the various estimators considered.

The second mechanism, discussed in the next section, is based on p-hacking, whereby the

researcher engages in a continuous search of statistical significance by trying many different

control variables. Although more realistic, this scenario features significantly less control over

11



the relative degree of selection on standard errors. One important advantage of p-hacking

selection is its ability to generate selection of the two aforementioned flavors while, at the same

time, causing heterogeneity in the reported estimates. But first back to cheating.

4.1.1 Generation of Primary Data

The primary data in the cheating scenario are generated according to

Y = α0 + α1X + u, (3)

where α0 = 0 (without loss of generality), X ∼ U(0, 1) and u ∼ N(0, σ2u). The parameter

of interest to meta-analysis is α1. Let i index each primary study and let there be M such

primary studies, so that i = 1, 2, . . . ,M . Each primary study obtains random samples of size

Ni for variables Y and X, estimates the regression model specified by Equation 3, and reports

the OLS estimate of α1 and its corresponding standard error.

4.1.2 Selection

Researchers prefer positive and statistically significant estimates of α1. A fraction π of the

researchers are potential cheaters, who are willing to cheat on either the reported estimates (E-

selection) or on the standard errors (SE-selection) in order to inflate the statistical significance of

their findings. They do so only when obtaining a positive but statistically insignificant estimate.

Hence, when the obtained estimate is either negative or positive but statistically significant,

the results are reported truthfully. If, on the contrary, the obtained estimate is positive but

statistically insignificant, the researcher cheats on the reported findings with probability π.

With probability φ, a cheating researcher engages in SE-selection, replacing the obtained

standard error by a fake value that is just enough to achieve statistical significance at the 5%

level; that is, the reported standard error is α̂1/1.96. With probability 1-φ the researcher engages

instead in E-selection, replacing the obtained estimate by a fake value that is just enough to

achieve statistical significance at the 5% level; that is, the reported estimate is SE(α̂1)× 1.96.

In this environment, therefore, the overall magnitude of publication selection is measured

by π and the relative importance of SE-selection versus E-selection is measured by φ. Note

that, to keep perfect control on φ as measuring the relative importance of the two types of

selection, we assume that researchers do not engage in both types simultaneously. This is also

the reason why we assume that negative estimates are not subject to selection; otherwise, a

negative estimate would have to become positive, which would necessarily involve E-selection.

This restriction will be removed in the p-hacking scenario of the following section, so we ask

the reader to tolerate it while we build toward a more realistic simulation.

4.1.3 Parameter Values and Distributions

We implement this type of selection by means of the parameter values and distributions sum-

marized in Table 3. The number of studies in a meta-analysis is M = 80 in line with previous
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related simulations.9,11 We assume that primary sample sizes are drawn from a uniform distri-

bution over (30, 1000); in the next section we will calibrate the sample size distribution based

on 436 published meta-analyses. We consider three alternative values of α1: zero, one, and

two. We interpret these values as representing no effect, a moderate effect, and a large effect,

respectively. We assume that the probability of potentially engaging in cheating is π = 0.5 and

let φ vary from 0 to 1 in steps of 0.25. Note that φ = 0 corresponds to pure E-selection, whereas

φ = 1 corresponds to pure SE-selection. Finally, we calibrate σ2u = 3.3 in order to generate

similar effective incidences of selection for α1 = 0 and α1 = 2, which is about 24% in both cases;

for α1 = 1 it is a bit larger, at about 32%. (The effective incidence of selection is the overall

fraction of findings subject to selection. Note that, in this scenario, effective selection incidence

has a hump-shaped profile when graphed against α1. This is because of the assumption of no

selection on negative findings. Hence, when α1 = 0, selection incidence is not very high because

approximately half of the estimates are negative. It gets higher for α1 = 1, because less esti-

mates are then negative. And it gets lower again for α1 = 2 because more estimates become

significantly positive naturally, even without selection.)

Table 3: Parameter values and distributions in the cheating selection scenario

Parameter/Variable Description Values/distribution

X Regressor of the primary model ∼ U(0, 1)
u Error term of the primary model ∼ N(0, σ2u)
M Number of studies/estimates 80
Ni Sample size of the primary study ∼ U(30, 1000)
α1 Size of the true effect 0, 1, 2
π Fraction of potential cheaters 0.5
φ Fraction of selection on standard errors 0, 0.25, 0.5, 0.75, 1
σ2u Variance of the error term 3.3

Notes: See text for explanation of the chosen values and distributions. When possible, in calibration
we follow the tradition of previous simulations built for meta-analysis in the context of regression esti-
mates.9,11,61

4.1.4 Replications and Statistics

To study the performance of the 7 baseline estimators and their MAIVE variants, we set the

number of replications to R = 2000. We compute the bias and the mean squared error (MSE)

of each estimator by averaging the estimation errors and the squared estimation errors over R,

respectively. Hence, for a generic estimator z, the two statistics are given by

Bias(z) =
1

R

R∑
i=1

(zi − α1) ,

MSE(z) =
1

R

R∑
i=1

(zi − α1)
2 .
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In addition, we also compute the coverage rates of each estimator by counting the number

of confidence intervals that contain the true value of α1 as a fraction of the total number of

replications. Because of space and ease of exposition considerations, in the main text we present

only the results on bias and coverage rates, with MSE results reported in Appendix B.

4.2 Results

Figures 2-5 in the main text show simulation results for the case of cheating selection. Because

the results for a large true effect are very similar to the results for a moderate effect, we relegate

the former to Appendix A. We do not show the results for Andrews and Kasy’s estimator and

p-uniform∗, since they are not suited for this particular flavor of selection, giving huge biases and

low coverage rates. We discussed the issue with the authors of p-uniform∗, who confirmed that

the estimator is not suitable to our cheating scenario. Thus it would be unfair to include these

estimators now and compare them with the agnostic funnel-based techniques. All estimators

are included in the more realistic p-hacking scenario of the following section.

The figures follow the same structure: panel (a) displays the unadjusted estimators, panels

(b)-(e) show, one by one, the effect of adjusting FE/WLS, PET-PEESE, EK, and WAAP, and

panel (f) compares the best versions of the adjusted estimators. Figures 2-3 show the bias and

coverage rates for the case of no effect (α1 = 0), then Figures 4-5 display the same results for

the case of a moderate effect (α1 = 1), and, finally, Figures 10-12 in Appendix A do the same

for the case of a large effect (α1 = 2). Results for MSE are shown in Appendix B.

The most important results from Figure 2 are the following. When selection operates fully

on estimates (φ = 0), the simple average of the reported estimates shows a large bias, partly

corrected by FE/WLS and WAAP, and entirely corrected by PET-PEESE and EK, as ex-

pected. When selection is fully on standard errors (φ = 1), however, only the simple average

is unbiased; FE/WLS, WAAP, PET-PEESE, and EK all show a similar positive bias. This

implies that selection on standard errors is fundamentally a weighting problem. The bias arises

from assigning too much weight to positively-selected estimates. Accounting for the correlation

between estimates and standard errors (PET-PEESE and EK) does not solve the problem.

Because selection on standard errors is a weighting problem, adjusting the weights in

FE/WLS naturally makes it unbiased. The same applies for WAAP, which is virtually equal

to FE/WLS in this case. But adjusting the weights by itself does not solve the problem if the

standard errors are also included as a regressor (PET-PEESE and EK) and φ is large; in fact, it

makes the bias larger. Not including the standard errors as a regressor, on the other hand, does

not correct the bias if φ is small. Because φ is, in practice, unknown, the standard error should

be included in the regression but instrumented (either in PET-PEESE or in EK). Instrumenting

makes the bias much smaller.

What about instrumenting the SEs and at the same time adjusting the weights in PET-

PEESE and EK? It turns out that this does not change much the bias relative to the case of

only instrumenting the SEs. As we will see below, however, it does improve on other metrics

(coverage, in particular) and for nonzero true effects. Dropping the weights when including and
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Figure 2: Bias: cheating selection, no effect (α1 = 0)

(a) Unadjusted estimators (b) Adjusting FE/WLS
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Figure 3: Coverage: cheating selection, no effect (α1 = 0)

(a) Unadjusted estimators (b) Adjusting FE/WLS
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(c) Adjusting PET-PEESE (d) Adjusting EK
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Figure 4: Bias: cheating selection, moderate effect (α1 = 1)

(a) Unadjusted estimators (b) Adjusting FE/WLS
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Figure 5: Coverage: cheating selection, moderate effect (α1 = 1)

(a) Unadjusted estimators (b) Adjusting FE/WLS
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0 0.25 0.5 0.75 1

Proportion of selection on standard errors ( )

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ov

er
ag

e 
ra

te

PET-PEESE
PET-PEESE w/ adj. weights
PET-PEESE w/ instr. SE
PET-PEESE w/ instr. SE & adj. weights
PET-PEESE w/ instr. SE & no weights

0 0.25 0.5 0.75 1

Proportion of selection on standard errors ( )

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ov

er
ag

e

EK
EK w/ adj. weights
EK w/ instr. SE
EK w/ instr. SE & adj. weights
EK w/ instr. SE & no weights

(e) Adjusting WAAP (f) Comparison of adjusted estimators

0 0.25 0.5 0.75 1

Proportion of selection on standard errors ( )

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
ov

er
ag

e

WAAP
WAAP w/ adj. weights

0 0.25 0.5 0.75 1

Proportion of selection on standard errors ( )

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

C
ov

er
ag

e

Simple Average
FE/WLS w/ adj. weights
PET-PEESE w/ instr. SE and adj. weights
EK w/ instr. SE and adj. weights
WAAP w/ adj. weights

18



instrumenting the SEs in the regression also works reasonably well. The bottom line is that

instrumenting SEs and adjusting or dropping the weights in PET-PEESE or EK reduces the

selection bias for any value of φ.

Regarding the mean squared error, shown in Figure 13 in Appendix B, adjusting the weights

or instrumenting the SEs, despite decreasing the estimators’ bias, often increases the estimators’

variance and hence their MSE. But the lower variance of the unadjusted estimators is partly

spurious and, coupled with large biases, results in low coverage. Hence, this increase in variance

is a necessary adjustment to restore the nominal coverage of confidence intervals, as we will see

below. For all following simulations, MAIVE adjustments also help improve MSE.

Results for coverage rates are shown in Figure 3. Like the bias, the coverage rates of the

unadjusted estimators deteriorate rapidly as the degree of selection on standard errors (φ)

increases. For as little as φ = 0.25, the coverage rate drops from about 95% to about 60%

for PET-PEESE and EK, and from 50% to 25% for FE/WLS and WAAP. Only adjusting the

weights or only instrumenting the SEs improves the coverage rate substantially but this rate

falls with φ. But instrumenting the SEs while adjusting the weights keeps the coverage rate at

the nominal level in PET-PEESE and EK, irrespective of φ. Dropping instead of adjusting the

weights leads to lower coverage. (Note that this is generally not the case in the more realistic

p-hacking scenario of the next section, when dropping the weights often performs better than

adjusting them.) Adjusting the weights in FE/WLS or WAAP improves coverage, but only

sufficiently so for very large values of φ.

The key results from Figures 4-5, which focus on a moderate true effect, are the following. For

a positive true effect (α1 = 1), the unadjusted estimators, and in particular those that explicitly

address publication selection (PET-PEESE, EK, and WAAP), become extremely downward

biased as the fraction of selection on standard errors (φ) increases. The reason is that selection

on standard errors, like selection on estimates, gives rise to a positive correlation between

estimates and standard errors. The solution, as we saw above, should be readjusting the weights.

But PET-PEESE and EK attribute this correlation to inflation in the estimates, and correct it

down, causing a large negative bias for large φ. WAAP, likewise, is negatively biased, because

it assigns too much weight to small estimates with artificially small standard errors.

As in the case of α1 = 0, adjusting the weights in FE/WLS and WAAP eliminates the

bias for large φ. In PET-PEESE and EK, simultaneously instrumenting the SEs and adjusting

(or dropping) the weights also eliminates the bias for large φ while keeping it low for small

φ. However, only adjusting the weights or only instrumenting the SEs leads to larger negative

biases for large φ. The bias due to inflated precision is much larger than the bias due to inflated

estimates. Overall, the fully adjusted PET-PEESE shows the smallest bias across values of φ.

In contrast to α1 = 0, the MSEs of the unadjusted estimators now increase with φ (Figure 14).

Moreover, the adjusted estimators now show smaller MSEs. The adjusted estimators, especially

PET-PEESE and WAAP, attain a coverage rate very close to the nominal level.

The results for a large underlying effect are available in Appendix A. The pattern of bias is

very similar to the case of α1 = 1, with unadjusted estimators showing large negative biases for
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large φ. Adjusting the weights in FE/WLS and WAAP eliminates the bias for large φ. Fully

adjusting PET-PEESE and EK also leads to low biases across the different values of φ. In

terms of MSEs and coverage rates, the case of α1 = 2 is also similar to the case of α1 = 1: the

adjusted estimators always attain lower MSEs and better coverage, very close to the nominal

level in all cases for any value of φ.

In a nutshell, selection on standard errors causes conventional estimators to be biased. The

bias can be huge and negative for positive true effects. Coverage rates deteriorate substantially

in the presence of this type of selection. Adjusting or omitting the weights and instrumenting

the standard errors in PET-PEESE and EK is effective in reducing the bias caused by selection

on standard errors. The instrumental adjustment also restores the coverage rates of confidence

intervals to their nominal levels. Adjusting the weights in FE/WLS and WAAP improves these

models’ performance, but they remain less effective than the MAIVE version of PET-PEESE

in correcting the bias caused by selection on estimates.

5 Selection Based on p-Hacking

5.1 Simulation Setup

5.1.1 Generation of Primary Data

In the more realistic p-hacking simulation the data generating process for primary studies

includes not one but two regressors, X1 and X2:

Y = α0 + α1X1 + α2X2 + u, (4)

where, again, α0 = 0 (without loss of generality), X1 ∼ U(0, 1), and u ∼ N(0, σ2u). The second

regressor, X2, is a convex combination of X1 and an independent random term ε ∼ N(0, 1);

i.e., X2 = ψX1 + (1 − ψ)ε, where ψ ∈ (0, 1). Hence, X1 and X2 are positively correlated by

construction, this correlation being governed by ψ. The parameter of interest to meta-analysis

is α1. The M primary studies each report an OLS estimate and a corresponding standard error

of α1 using a sample of size Ni. The numerical values of the parameters depend on the selection

mechanism assumed and are discussed below.

5.1.2 Selection

In this selection scenario, some researchers engage in questionable research practices by ma-

nipulating the specification of the model. In particular, we assume that primary studies start

by estimating the correctly specified model (Equation 4). If the obtained estimate of α1 is

not positive and statistically significant in the correctly specified model, then, with probability

π, the dissatisfied authors of such a primary study replace the true control variable X2 by a

different control variable, X3. They try many such variables until they find one that ‘works,’

in the sense of turning the estimate of α1 positive and statistically significant. (We implement
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this idea by first uniformly drawing a correlation coefficient between X2 and X3, constrained

to be positive and less than 0.8. We then generate variable X3 to match this correlation with

X2. The maximum correlation of 0.8 is imposed just to save on computing time, since very high

correlations do not help the cause of getting statistical significance.)

Replacing X2 by a related but weaker control variable X3 helps achieving statistical signifi-

cance through both E-selection and SE-selection. E-selection works through the bias it causes

on the estimate of α1. Because X1 and X2 are positively correlated, dropping X2 in fact biases

upwards the estimate of α1 (omitted-variable bias), making statistical significance more likely.

The bias increases with the correlation between X1 and X2 and with the value of α2. The bias is

somewhat mitigated by the inclusion of X3. Note that, by inducing biases in the reported esti-

mates, p-hacking causes not only publication selection but also excess variation in the reported

findings (i.e., heterogeneity), a feature that characterizes most meta-analyses in observational

research. In economics, for example, heterogeneity—rather then the unconditional mean—is

often the focus of applied meta-analyses.

The p-hacking process also causes SE-selection. This is because replacing X2 by a weaker

control decreases the amount of multicollinearity in the model, thus artificially decreasing the

standard error of the estimate of α1 relative to the corresponding standard error in a correctly

specified model. SE-selection also increases with the correlation between X1 and X2, governed

by ψ, but proportionally more so than E-selection. (To see this, first note that E-selection

depends on the bias of the estimate of α1. At most, in case X2 is dropped or replaced by an

irrelevant control, this bias is given by ψα2, and thus increases linearly with ψ. But SE-selection

increases more than linearly with ψ. This is because the standard error of α̂1 can be written as

c
√

1/(1− ψ2), where c depends on the variances of Y and X1, on the R2 of the regression, and

on the sample size, but is invariant to ψ. So the standard error increases more than linearly with

ψ, approaching infinity as ψ approaches one.) Hence, this scenario still allows us to control the

relative magnitude of SE-selection versus E-selection, albeit indirectly and imperfectly. It is not

possible, however, to fully decouple the two flavors of selection in this simulation environment,

unlike in the cheating scenario.

On a technical note, we limit the number of control variables attempted by p-hackers to H.

If, at the H-th attempt, the estimate of α1 remains negative or statistically insignificant, the

p-hacker gives up the p-hacking search and resorts instead to an entirely new dataset, starting

the process all over again. We do so because it may be extremely difficult (and time-consuming,

from a computational perspective) in some cases to p-hack a very negative estimate into a

significantly positive one. This is especially the case when α1 is very small, which, by sampling

error alone, may generate substantially negative estimates in some datasets.

5.1.3 Parameter Values and Distributions

We implement p-hacking selection using the parameter values and distributions summarized in

Table 4. A key parameter in the simulations is ψ, the correlation between X1 and X2, since

it governs the relative degree of SE-selection versus E-selection. The higher its values, the
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Table 4: Parameter values in the p-hacking selection scenario

Parameter/Variable Description Values/distribution

X1 Main regressor of the primary model ∼ U(0, 1)
X2 Control variable of the primary model ψX1 + (1− ψ)ε
ε Independent stochastic component of X2 ∼ N(0, 1)
ψ Correlation coefficient between X1 and X2 0.5, 0.6, 0.7, 0.8, 0.9
α1 Size of the true effect 0, 1
α2 Slope coefficient of X2 2
u Error term of the primary model ∼ N(0, σ2u)
σ2u Variance of the error term 5.06
Ni Sample size of the primary study ∼ Γ(a, b)
a Parameter of the gamma distribution 0.65
b Parameter of the gamma distribution 731
M Number of studies/estimates 80
π Fraction of potential p-hackers 0.5
H p-hacking attempts before drawing new data 50

Notes: See text for explanation of the chosen values and distributions. When possible, in calibration
we follow the tradition of previous simulations built for meta-analysis in the context of regression esti-
mates.9,11,61,91

larger the relative degree of SE-selection. (We can quantify, for each value of ψ, the relative

importance of SE-selection that would correspond to parameter φ in the cheating selection case;

see below.) We let ψ take on values from 0.5 to 0.9 in steps of 0.1, using the middle value of

0.7 as the baseline value for the calibration of other parameters. In line with related simulation

studies,9,11 we assume a meta-analysis of M = 80 studies and a probability of engaging in

publication selection (in this context, the fraction of potential p-hackers) of π = 50%. The

maximum number of p-hacking attempts before drawing new data is set at H = 50.

Regarding the true effect, we consider the cases where it is nil (α1 = 0) and where it is

positive (α1 = 1). We do not separately consider a case of a “large effect” as in the cheating

scenario, because once again the results would be qualitatively identical to α1 = 1, so we have

just one value for the positive effect. We set the remaining parameters (especially σ2u) so that

α1 = 1 is neither too small nor too large an effect. If σ2u is too large, α1 = 1 effectively represents

a small effect. Conversely, when σ2u is too small, α1 = 1 effectively represents a large effect.

Moreover, the larger the effective size of α1, the smaller the effective incidence of publication

selection, eventually dropping to zero. For α1 = 0, the effective incidence of selection is about

49%. (This assumes that primary studies test the null hypothesis that α1 = 0 using a two-sided

test at the 5% level. Hence, the probability of not finding a significantly positive value is 97.5%.

Because only half of the studies engage in publication selection, the effective selection incidence

is half of this rate, that is, 48.75%.) We then choose σ2u so that the effective selection incidence

for α1 = 1 is half of the incidence for α1 = 0—that is, 24%. The implied value of σ2u is 5.06.

The p-hacking scenario generates heterogeneity. Given σ2u, α1, and ψ, the main parameter

determining the degree of parameter heterogeneity is α2. Based on the typical findings of
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applied meta-analyses, simulation studies9,11 often assume values of I2 of at least 70%. By

setting α2 = 2, we arrive at an I2 of about 73% for α1 = 0 (for α1 = 1, the I2 is about half).

The sample size of a primary study, Ni, is drawn from a truncated gamma distribution Γ(a, b).

Note that the mean of this distribution is given by ab and the variance by ab2. We choose

the values of a and b to match the research record. Using a database of 436 meta-analyses in

economics provided to us by Chris Doucouliagos,10 we find the medians of the mean and variance

of the sample sizes within the individual meta-analyses to be 473 and 5882, respectively; using

these as target values, we find the required gamma parameters to be a = 0.65 and b = 731. We

truncate the distribution from below, so that a sample size is never smaller than 30.

5.1.4 Implied Relative Degree of SE-Selection

As mentioned above, we control the relative degrees of selection on estimates and selection on

standard errors indirectly through the parameter ψ. In the cheating selection scenario, this

relative degree was controlled directly through φ. Although we cannot control φ directly here,

we can nevertheless infer its size for each value of ψ. To do so, start by denoting, for the set of

selected estimates, the observed (post-selection, hacked) t-statistic of α̂1 by t = α̂1/SE(α̂1) and

the original (pre-selection, unhacked) t-statistic by t∗ = α̂∗
1/SE(α̂1)

∗. Of course, the objective

of selection is to increase the size of the t-statistic, so t > t∗. E-selection implies α̂1 > α̂∗
1

and SE-selection implies SE(α̂1) < SE(α̂1)
∗. In the p-hacking scenario, however, both types

usually occur simultaneously and φ measures the relative importance of each. Because t/t∗ =

(α̂1/α̂
∗
1)× (SE(α̂1)

∗/SE(α̂1)), it follows that

ln

(
t

t∗

)
= ln

(
α̂1

α̂∗
1

)
+ ln

(
SE(α̂1)

∗

SE(α̂1)

)
,

which decomposes the amount of publication selection in selected estimates (percent change of

the t-statistic) into its E-selection component (given by the first term, the percent increase of α̂1

after selection) and its SE-selection component (given by the second term, the percent decrease

in SE(α̂1) after selection). Hence, the relative importance of SE-selection can be approximated

by the relative size of the second term:

φ =
ln(SE(α̂1)

∗/SE(α̂1))

ln(t/t∗)
. (5)

On a technical note, we need to impose some restrictions to ensure that 0 ≤ φ ≤ 1. If, for

a particular selected estimate, SE(α̂1) > SE(α̂1)
∗, then selection must have occurred entirely

through the estimates and we set φ = 0. If, on the other hand, α̂1 < α̂∗
1, then selection must

have occurred through the standard errors, and we set φ = 1. Table 5 shows the values of

φ corresponding to the various values of ψ. Clearly, the relative importance of SE-selection

increases with ψ.
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Table 5: The fraction of SE-selection corresponding to correlation between regressors

True effect Correlation (ψ)
(α1) 0.5 0.6 0.7 0.8 0.9

0 0.009 0.015 0.041 0.095 0.216
1 0.026 0.040 0.102 0.207 0.370

Notes: The table shows the fraction of selection on standard er-
rors relative to selection on estimates (φ in the cheating scenario)
mapped to the correlation coefficient between X1 and X2 (ψ in
the p-hacking scenario) and the true effect. For example, if the
correlation is 0.9 and the true effect is 1, the implied fraction of
SE-selection is 0.37.

5.2 Results

In the p-hacking selection environment we simulate all estimators in all versions described earlier

in Table 2. The results are reported following the same structure as in the cheating simulation

scenario. Figures 6-7 show the bias and coverage for no effect (α1 = 0) and various values of ψ.

Figures 8-9 show the results for a positive effect (α1 = 1). Results showing MSE are available

in Appendix B. Note that the horizontal axis now does not measure the relative degree of

SE-selection, but can be recomputed to that degree using Table 5.

Regarding Figure 6, the simple average measures the effect size inflation caused by E-

selection. It increases with ψ, because E-selection increases with ψ: the larger its value, the

larger the (positive) biases in the individual studies that are subject to selection. All results

should thus be evaluated relative to the simple average. SE-selection also increases with ψ, and

more than proportionally so (see Table 5). For ψ = 0.5, SE-selection is fairly low and all methods

correct a large chunk of the selection bias. As ψ goes up, so does the relative importance of

SE-selection. As a consequence, the capacity of these methods to correct for the increasing bias

deteriorates rapidly. For most methods, the biases due to spurious precision eventually surpass

the selection bias itself; i.e., the methods actually worsen the existing publication bias. Notable

exceptions are Andrews-Kasy and p-uniform∗, which always correct part of the selection bias.

Our proposed adjustment improves all methods except Andrews-Kasy and p-uniform∗—

where, as we have noted, the adjustment has weaker statistical justification. In EK and PET-

PEESE, it works better when instrumenting the SEs in the meta-regression and using no weights.

Thus corrected, these estimators tend to perform the best, especially for large ψ. The profiles

of MSE in Figure 15 in Appendix B are very similar to the profiles of bias in Figure 6.

Regarding Figure 7, the coverage rates also decrease markedly with ψ. Only Andrews-Kasy

manages to sustain acceptable coverage for ψ up to 0.75. At this value of ψ, all the other

estimators show very low coverage rates of 20% or even lower. Our adjustment works relatively

well in PET-PEESE and EK, especially when no weights are used, with coverage rates above

80% (still below the 95% nominal level, though). It’s important to emphasize the role of the

weights as ψ increases. Only instrumenting the SEs in the meta-regression does not work.
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Figure 6: Bias: p-hacking selection, no effect (α1 = 0), various values of ψ

(a) Unadjusted estimators (b) Adjusting FE/WLS
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Figure 7: Coverage: p-hacking selection, no effect (α1 = 0), various values of ψ

(a) Unadjusted estimators (b) Adjusting FE/WLS
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Figure 8: Bias: p-hacking selection, positive effect (α1 = 1), various values of ψ

(a) Unadjusted estimators (b) Adjusting FE/WLS
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Figure 9: Coverage: p-hacking selection, positive effect (α1 = 1), various values of ψ

(a) Unadjusted estimators (b) Adjusting FE/WLS
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Better, though still insufficient, is to also adjust the weights; much better is to drop them

altogether. For Andrews-Kasy and p-uniform∗, our adjustment does not work at all.

Regarding Figures 8-9, the results for α1 = 1 are qualitatively similar to those seen above

for α1 = 0. Quantitatively, the biases and MSEs are now typically smaller and coverage is

better; this is because a larger true effect reduces the overall size of publication bias (less p-

hacking is needed). All methods still show a decreasing capacity to correct for publication bias

as ψ increases. Eventually, the biases of the correction methods become larger than publication

bias itself (measured by the simple average), although this happens at a higher ψ than before.

The results of Andrews and Kasy’s model in particular are volatile, which in our experience

is a common feature of selection models in meta-analyses of typical size. Our adjustment now

improves the performance of all methods, including selection models. In PET-PEESE, adjusting

the weights is comparable to dropping them, and a similar observation applies to EK. WAAP

with adjusted weights and SEs now does almost as well as PET-PEESE.

The reader may be surprised that the bias of unadjusted methods is now positive, while

in the cheating scenario the bias was negative (both for α1 = 1). The reason is that in the

p-hacking scenario, selection on estimates and selection on standard errors (or, analogously, the

Lombard effect and Taylor’s rule) interact. In the cheating scenario the bias is always downwards

if α1 > 0, because small estimates are assigned small standard errors to be significant, which

gives small estimates too much weight. In the p-hacking scenario estimates can be too large

and too precise at the same time, which creates the upward bias shown in Figure 8.

In a nutshell, the more realistic p-hacking simulation implies that the MAIVE version of

PET-PEESE without additional inverse-variance weights is more robust to spurious precision

than available alternatives. When spurious precision is important, the method clearly domi-

nates unadjusted estimators, including selection models. When the degree of spurious precision

is negligible, the performance of MAIVE is similar to unadjusted methods, though it can be

sometimes (especially for a zero true effect) beaten by selection models. Based on the simula-

tion results and Table 5, the simple unweighted mean can often beat sophisticated unadjusted

estimators for a ratio of SE-selection as low as 0.2 relative to total amount of selection. Cures

to publication bias can be worse than the disease.

6 Conclusion

We do not argue that spurious precision is common. We argue that it can plausibly arise in

observational research. Even in experimental settings, randomization can fail,92 and authors

often use regressions to control for pre-treatment covariates or make other adjustments93 that

can yield spurious precision. When it arises, a small dose can render the simple mean more

reliable than sophisticated correction techniques. The Meta-Analysis Instrumental Variable Es-

timator (MAIVE) solves the problem by using inverse sample size as an instrument for reported

variance. That is, we regress the reported squared standard errors on the inverse of the number

of observations used in the primary study. The fitted values from this regression are then used
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instead of reported variance in the PEESE meta-regression. Standard weighted means, funnel

plots, and funnel-based methods can be adjusted similarly to make them robust to spurious

precision. The entire meta-analysis toolkit can be salvaged with this modification.

The instrumental approach has seven benefits over using sample size as a proxy for precision,

and we explain them in Section 3. There are at least two costs as well, both compared to

the proxy approach and the classical one that relies on reported precision. First, MAIVE

is more complex since it involves an additional regression and computation of fitted values

and valid confidence intervals. But the instrumental approach is available in most statistical

programs. We create the maive package for R, which makes estimation easy for meta-analysts

unfamiliar with instrumental variables. Second, the additional regression makes MAIVE noisier

compared to conventional techniques. When a meta-analyst is sure there can be no spurious

precision in her data, using reported precision without instruments will yield unbiased and more

efficient meta-analysis estimates. The lack of spurious precision can be tested approximately

by employing the Hausman specification test:94 if the coefficients estimated in MAIVE are far

from those of an unadjusted PEESE, spurious precision is likely an issue.

A discussion is in order regarding the application of MAIVE—pronounced, by the way,

as the Irish name Maeve. The instrument is the overall sample size, not degrees of freedom,

because the latter depends on clustering units. We prefer the MAIVE version of PEESE without

weights (after testing with unweighted MAIVE-PET whether the true effect is nonzero). This

parsimonious specification intuitively fits both panels of Figure 1 in the Introduction. The maive

package allows for optional adjusted weights. Researchers may choose a MAIVE version of

another estimator, such as endogenous kink. The package also runs the Hausman test. Because

PEESE is heteroskedastic by definition and we prefer not to use inverse-variance weights, the

package produces heteroskedasticity-robust standard errors by default. When studies report

multiple estimates, standard errors in MAIVE—and any meta-analysis estimator—should be

clustered at the study level, again a default option. With fewer than 30 studies we recommend

wild bootstrap.21 It is a good idea to include study-level dummies (econometric fixed effects)

to filter out study-specific idiosyncrasies related to unobserved heterogeneity. The package

also reports a robust F-statistic of the first-stage regression. If the F-statistic is below 10, the

instrument is weak and MAIVE results should be treated with caution.89 Researchers may want

to use confidence intervals robust to weak instruments.86–88

The reader will object that our simulation is unfair to correction methods. The methods

were designed to counter publication bias; we simulate p-hacking. Individual estimates and

standard errors get biased, which is why selection models do not work well here—though they

do not assume, as funnel methods assume, that selection works only on estimates (the Lombard

effect discussed in the Introduction). The distinction between publication bias and p-hacking

is clear in theory, but in practice both are often observationally equivalent to the meta-analyst.

(But p-hacking likely predominates.95) As long as we believe our p-hacking environment is

broadly realistic, we need a technique that corrects the resulting bias. MAIVE is the only

such technique. One can design p-hacking scenarios in which misspecifications make it almost
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impossible for meta-analysis methods to uncover the true unconditional mean.92,96 If that is a

realistic description of observational research, unconditional meta-analysis means are meaning-

less.97 MAIVE can be extended to allow for observed heterogeneity and deliver context-specific

means via incorporation into Bayesian model averaging meta-regression approaches addressing

model uncertainty.45–49

We leave questions open regarding spurious precision. How common is it in practice? How

does measurement error influence the relative performance of MAIVE? What happens when

method heterogeneity explicitly affects both estimates and their precision? Does spurious pre-

cision help explain why meta-analyses exaggerate the true effect in comparison to multilab pre-

registered replications?70,98,99 How to correctly adjust selection models for spuriousness? The

last is perhaps the most important question for future research, because many meta-analysts

prefer selection models over funnel-based techniques.76 The adjustment of selection models is

not straightforward since here precision has two intertwined roles: identification and weight-

ing. For identification, we need the reported, nominal precision, which determines statistical

significance. But for weights we need the underlying, true precision. The maximum likelihood

approach has to be modified to allow a different measure of precision for each role.

The bottom line is that spurious precision, while plausibly destructive, is surmounted by

adjusting funnel-based methods.

Highlights

What is already known

� In meta-analysis it is optimal to give more weight to more precise studies.

� Inverse-variance weighting maximizes efficiency and may attenuate publication bias.

� Inverse-variance weighting is used by all common estimators.

What is new

� If reported precision exaggerates real precision, inverse-variance weighting creates a bias.

� With enough spurious precision, cures to publication bias are worse than the disease.

� Spurious precision arises naturally in observational research via p-hacking.

� Meta-Analysis Instrumental Variable Estimator (MAIVE) corrects for spurious precision.

Potential impact

� Meta-analysts should use MAIVE if they suspect p-hacking.

� The difference between MAIVE and unadjusted estimators can measure spurious precision.

� MAIVE substantially improves the robustness of the current meta-analysis toolkit.
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Appendices

A Cheating Selection for a Large Underlying Effect (for Online
Publication)

Figure 10: Bias: cheating selection, large effect (α1 = 2)

(a) Unadjusted estimators (b) Adjusting FE/WLS
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Figure 11: MSE: cheating selection, large effect (α1 = 2)

(a) Unadjusted estimators (b) Adjusting FE/WLS
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Figure 12: Coverage: cheating selection, large effect (α1 = 2)

(a) Unadjusted estimators (b) Adjusting FE/WLS
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B Additional Simulation Results: Mean Squared Error (for On-
line Publication)

Figure 13: MSE: cheating selection, no effect (α1 = 0)

(a) Unadjusted estimators (b) Adjusting FE/WLS
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Figure 14: MSE: cheating selection, moderate effect (α1 = 1)

(a) Unadjusted estimators (b) Adjusting FE/WLS
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Figure 15: MSE: p-hacking selection, no effect (α1 = 0), various values of ψ

(a) Unadjusted estimators (b) Adjusting FE/WLS
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Figure 16: MSE: p-hacking selection, positive effect (α1 = 1), various values of ψ

(a) Unadjusted estimators (b) Adjusting FE/WLS
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