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Abstract: 
We demonstrate that all meta-analyses of partial correlations are biased, and yet 
hundreds of meta-analyses of partial correlation coefficients (PCC) are conducted 
each year widely across economics, business, education, psychology, and medical 
research. To address these biases, we offer a new weighted average, UWLS+3. 
UWLS+3 is the unrestricted weighted least squares weighted average that makes an 
adjustment to the degrees of freedom that are used to calculate partial correlations 
and, by doing so, renders trivial any remaining meta-analysis bias. Our simulations 
also reveal that these meta-analysis biases are small-sample biases (n < 200), and a   
simple correction factor of (n-2)/(n-1) greatly reduces these small-sample biases. In 
many applications where primary studies typically have hundreds or more 
observations, partial correlations can be meta-analyzed in standard ways with only 
negligible bias. However, in other fields in the social and the medical sciences that 
are dominated by small samples, these meta-analysis biases are easily avoidable by 
our proposed methods. 
 
JEL: C83 
Keywords: partial correlation coefficients, meta-analysis, bias, small sample 
 
An online appendix is available at meta-analysis.cz/pcc. 



 
 

1. INTRODUCTION 

Every year, hundreds of meta-analyses of partial correlation coefficients (PCC) are conducted 

widely across economics, business, education, psychology, and medical research.i Some 

researchers consider partial correlations to be the preferred effect size to summarize multiple 

regressions.1 Others recommend using partial correlations as a last resort when different 

measures of the dependent variable and/or the independent variable of interest are routinely 

employed in the relevant area of research.2 What is not widely recognized is that all meta-

analyses of PCCs are biased regardless of whether fixed effect (FE), random effects (RE), or the 

unrestricted weighted least squares (UWLS) weighted average are employed and in the absence 

of any publication selection bias.ii The purpose of this paper is to offer a simple and practical 

solution to these meta-analysis biases. 

 

2. PARTIAL CORRELATION COEFFICIENTS 

Across many disciplines, multiple regressions are employed to evaluate the effect of a treatment, 

condition, or variable upon some outcome of interest after controlling for other, potential 

contaminating, effects or obscuring complexities.  Multiple regression can be represented as: 

𝑌𝑌𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1𝑖𝑖 + 𝛽𝛽2𝑋𝑋2𝑖𝑖+. . . +𝛽𝛽𝑗𝑗𝑋𝑋𝑗𝑗𝑖𝑖 + 𝜀𝜀𝑖𝑖           𝑖𝑖 = 1,2, . . . , 𝑛𝑛,        (1) 

where Y is the dependent variable or outcome of interest. Without loss of generalization, we take 

𝑋𝑋1 as the primary variable of interest (perhaps a dichotomous variable representing treatment). 

The other Xs are independent variables that are thought to affect the outcome. j is the total 

number of independent variables, and 𝜀𝜀𝑖𝑖 represent sampling errors and other residuals.  

                                                 
i According to Google Scholar, 229 articles were published in 2022 that include all the following phrases: “partial 
correlation”, “meta-analysis”, and “publication bias”. Because publication bias is discussed primarily in a meta-
analysis context, the last phrase is included to increase the probability that the corresponding study is a meta-
analysis, not a primary study citing a meta-analysis. In addition, Google Scholar lists 51 articles published in 2022 
that are classified as review articles, include the exact phrases “partial correlation” and “meta-analysis”, but exclude 
“publication bias”. Because many meta-analyses are not classified as review articles in Google Scholar, we believe 
that 250 is a lower bound for the number of meta-analyses of PCCs in the Google Scholar database. However, 
Google Scholar will also list duplicates as theses and preprints may also be listed as published papers. Nonetheless, 
there are probably at least 200 meta-analyses of partial correlations conducted per year.  
ii The unrestricted weighted least squares (UWLS) weighted average has been shown to have better statistical 
properties than RE when there is publication selection bias or when heterogeneity is correlated with sample size (or 
SE), which meta-research evidence finds in psychology.11-13  Recently, UWLS is shown to better represent medical 
research than RE across over 67,000 meta-analyses of approximately 600,000 studies.18  
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 Multiple regression is used with observational data, quasi-experiments, and other 

experimental designs when additional experimental conditions or subject characteristics need to 

be considered. For our purposes, the strength of the experimental design is not relevant as long as 

the focus of the meta-analysis is upon the estimated multiple regression coefficient, �̂�𝛽1, across 

the research literature. However, in some cases, observational multiple regressions can offer 

strong research designs.3  

 The partial regression coefficient, �̂�𝛽1, is not a standardized effect. It is measured in terms 

of Y per unit increase in 𝑋𝑋1. Any change in the measure, metric, or scale of either 𝑋𝑋1 or Y from 

one study to the next will render different estimates of �̂�𝛽1 uncomparable.  PCCs solve this 

problem. They have the same statistical properties and interpretation as simple bivariate 

correlations after the effects of 𝑋𝑋2,𝑋𝑋3, . . . ,𝑋𝑋𝑗𝑗 have been eliminated.4 Simple bivariate Pearson 

correlations are often employed as effect sizes in meta-analysis, and partial correlations come 

with the same advantages and limitations.  

 Gustafson5 mathematically derived a convenient formula that converts any partial 

regression coefficient, �̂�𝛽1, into a partial correlation coefficient, 𝑟𝑟𝑝𝑝: 

 
𝑟𝑟𝑝𝑝 = 𝑡𝑡

�𝑡𝑡2 + 𝑑𝑑𝑑𝑑�  ,             (2) 

 
where 𝑡𝑡 =  𝛽𝛽

�1
𝑠𝑠𝛽𝛽�1

 is the conventional t-test for the statistical significance of 𝑋𝑋1 in the explanation of 

Y, and  𝑑𝑑𝑑𝑑 = 𝑛𝑛 − 𝑗𝑗 − 1 are the degrees of freedom available to the multiple regression, eq. (1).  

𝑟𝑟𝑝𝑝 can be interpreted as a standardized regression coefficient that estimates the number of 

standard deviations that Y increases when 𝑋𝑋1 increases by a one standard deviation, holding all 

other variables constant, and 𝑟𝑟𝑝𝑝2  is the proportion of the variation in Y attributable to variation in 

𝑋𝑋1 after eliminating the effects of 𝑋𝑋2,𝑋𝑋3, . . . ,𝑋𝑋𝑗𝑗. Because economics, business, and social 

sciences, in general, often use different scales and measures of Y and/or 𝑋𝑋1, PCCs are frequently 

employed in the meta-analysis of these fields.2,6,7  

 The variance of 𝑟𝑟𝑝𝑝 is: 
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     𝑆𝑆12 = �1 − 𝑟𝑟𝑝𝑝2�
2

𝑑𝑑𝑑𝑑�             (3) 

 
Olkin and Siotani8.1,9 However, the test of PCC’s statistical significance, H0: ρ = 0, requires a 

slightly different formula for the variance of 𝑟𝑟𝑝𝑝: 

 

     𝑆𝑆22 = �1 − 𝑟𝑟𝑝𝑝2�
𝑑𝑑𝑑𝑑�            (4) 

 
.5 These two formulae only differ in that the numerator of 𝑆𝑆22 is not squared, in contrast to the 

numerator of 𝑆𝑆12.  Since, by definition, -1< 𝑟𝑟𝑝𝑝 < 1, it follows that  𝑆𝑆12 < 𝑆𝑆22 for all |𝑟𝑟𝑝𝑝| ≠ {0 or 1}. 

Using 𝑆𝑆22  and 𝑟𝑟𝑝𝑝 reproduces the t-value and the p-value of the original estimated partial 

regression coefficient, �̂�𝛽1; 𝑆𝑆12 does not.   

 Below we demonstrate that all meta-analyses of PCCs are biased (including FE, RE, and 

UWLS) regardless of which formula of variance is used. Nevertheless, conventional meta-

analyses that use 𝑆𝑆12 cause the estimates of mean effect to be twice as biased as those which 

employ 𝑆𝑆22. To address these biases, we offer a simple modification to the transformation 

formula, eq. (2), and a small-sample bias correction for degrees of freedom. First, however, we 

establish and discuss the bias of the conventional meta-analysis of PCCs. It is only through 

understanding these biases that a solution can be found. 

 
3. META-ANALYSIS BIAS 

3.1 Simulations 

To investigate the statistical properties of the meta-analysis of partial correlations, we conduct 

Monte Carlo simulations of RE and UWLS estimates of the mean PCC from randomly generated 

data, which is used to estimate multiple regressions and transform each �̂�𝛽1 to a PCC. Simulations 

offer an important advantage over other approaches in that we can set the ‘true’ population value 

of the PCC, ρ, by forcing its value upon the data generating process.  
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To obtain estimated PCCs for the effect size corresponding to the variable, 𝑋𝑋1, we start with 

the following multiple regression: 

 
𝑌𝑌𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1𝑖𝑖 + 𝛽𝛽2𝑋𝑋2𝑖𝑖 + 𝜀𝜀𝑖𝑖 𝑖𝑖 = 1,2, . . . ,𝑛𝑛         (5) 

For simplicity, we set all betas to 1 and assume that 𝑋𝑋1𝑖𝑖,𝑋𝑋2𝑖𝑖 , and  𝜀𝜀𝑖𝑖 are independently and 

identically distributed as N(0,1).iii The variable, 𝑌𝑌𝑖𝑖, is generated by eq. (5) after random and 

independent values are generated for 𝑋𝑋1𝑖𝑖,𝑋𝑋2𝑖𝑖, and  𝜀𝜀𝑖𝑖. As a next step, we estimate a multiple 

regression for eq. (5) and calculate the t-value of the estimated regression coefficient 𝛽𝛽1. We then 

convert 𝑋𝑋1′𝑠𝑠 t-value to a PCC via eq. (2). 

 Due to the clarity and simplicity of these data generating processes, the population 

variance of 𝑌𝑌𝑖𝑖 not attributed to the remaining independent variables, 𝑋𝑋2𝑖𝑖, equals 2 because this 

variance can be computed as the sum of the variances of 𝑋𝑋1𝑖𝑖 and 𝜀𝜀𝑖𝑖, each of which is set to have 

variance 1. Both 𝑋𝑋1𝑖𝑖 and 𝜀𝜀𝑖𝑖 are independently distributed with variance 1; hence, this total 

variance is the sum of 𝑋𝑋1𝑖𝑖 and 𝜀𝜀𝑖𝑖 variances. Thus, the ratio of 𝑌𝑌𝑖𝑖′𝑠𝑠 remaining variance explained 

by 𝑋𝑋1𝑖𝑖 is ½, leading to ρ = √½ or 0.707107.   This result also follows from Gustafson5 where  𝑟𝑟𝑝𝑝2  

is shown to be:  �̂�𝛽1
2

��̂�𝛽12 + 𝑑𝑑𝑑𝑑 ∙ 𝑆𝑆𝛽𝛽�1
2 �� .  Recall that 𝛽𝛽1 is set to 1,  𝑆𝑆𝛽𝛽�1

2 = (𝜎𝜎2 𝑑𝑑𝑑𝑑 ∙ 𝜎𝜎𝑋𝑋1
2� ),10 and both 

𝜎𝜎2 and 𝜎𝜎𝑋𝑋1
2  are set to 1 by design; thus, again  ρ2 = ½. In other simulation experiments, we set ρ 

equal to a ‘medium’ effect size (ρ  = sqrt(.1) = .3162) by dividing 𝑋𝑋1𝑖𝑖 ′ 𝑠𝑠 randomly generated 

N(0,1) by 3 and a ‘small’ effect size (ρ  = sqrt(1/82) = .1104) by dividing by 9.  Doing so makes 

𝑋𝑋1𝑖𝑖′ s variance equal to 1/9 and 1/81, respectively while leaving the error variance at 1—see Table 

1. 

For each study in our simulations, all the data in eq. (5) is randomly generated, the 

multiple regression, eq. (5), and its coefficients are estimated, and 𝑟𝑟𝑝𝑝 is calculated from eq. (2).  

𝑆𝑆12 is then calculated from eq. (3) and 𝑆𝑆22 from eq. (4), and all these calculations are repeated 50 

                                                 
iii We also simulate more complex multiple regression with 4, 6, and 10 independent variables.  Results from these 
more complex multiple regressions are practically equivalent and are reported below and in the Supplement.  
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times to represent one meta-analysis.iv For each meta-analysis of 50 estimated PCCs, the RE and 

the UWLS weighted averages are calculated in two ways by using 𝑆𝑆12 and 𝑆𝑆22.  

UWLS estimates the simple meta-regression coefficient, α1, from: 

𝑡𝑡𝑘𝑘 = 𝑟𝑟𝑝𝑝𝑝𝑝
𝑆𝑆𝑆𝑆𝑝𝑝

= 𝛼𝛼1 �
1

𝑆𝑆𝑆𝑆𝑝𝑝
� + 𝑢𝑢𝑘𝑘           k =1, 2, . . . , 50        (6) 

𝑆𝑆𝑆𝑆𝑘𝑘 is calculated as the square root of either 𝑆𝑆12 or 𝑆𝑆22 from their respective formulae above. Any 

common statistical software automatically calculates UWLS, 𝛼𝛼�1 , its standard error, test statistic, 

and confidence intervals. UWLS and the fixed effect (FE) must have identical point estimates, 

but UWLS automatically adjusts its standard errors and confidence intervals for heterogeneity 

when present.11,12 Because the bias and the square root of the mean square error (RMSE) must be 

the same for FE and UWLS, we report only UWLS below.  Previous simulations have shown 

that UWLS is statistically superior to RE if there is selection for statistical significance or if 

small studies are more heterogeneous than larger studies.11,13 In other cases where RE’s model is 

imposed upon the simulations, the differences between UWLS’ and RE’s statistical properties 

are negligible. For each randomly generated meta-analysis, the bias, RMSE and confidence 

intervals of RE and UWLS are calculated and then averaged across 10,000 replications of all 

these steps.  See the Supplement for the simulation code.  

Table 1 reports the results of these simulations using both versions of PCC’s variance—

eq. (3) and eq. (4). 𝑆𝑆12 consistently produces twice the bias as 𝑆𝑆22 (see also Stanley and 

Doucouliagos14 for details on this finding).  Table 1 also shows that 𝑆𝑆12 generates larger root 

mean squared errors and worse coverage (i.e., coverage rates that are often much different than 

their nominal 95% level) than 𝑆𝑆22. In Section 3.2, below, we discuss the reason for these biases 

and why 𝑆𝑆12 produces predictably larger biases. These results confirm Stanley and 

Doucouliagos’14 finding that the ‘correct’ variance, 𝑆𝑆12, eq. (3), is not useful in practice when 

conducting meta-analyses of partial correlations.  

 

                                                 
iv These biases are largely independent of the number of PCCs (k) in the meta-analysis. However, the sample size (n) 
of the primary study used to calculate the PCC is a very important determinant of bias. We used other values of k 
and found that meta-analyses of 10 or fewer studies consistently have slightly smaller biases while those with a 
larger number of estimates (k = 200) have slightly larger biases.   
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3.2      Reducing meta-analysis bias to triviality 

Looking closely at the biases identified through simulations reveals two additional lessons. First, 

although these biases are of a notable magnitude for small samples (n < 50), all these biases are 

mere rounding errors (i.e., .005) or smaller for large samples (i.e., n > 200 or n > 100 if 𝑆𝑆22 is 

used). Second, biases consistently halve as n doubles. Figure 1 graphs RE’s and UWLS’ biases 

against the inverse of degrees of freedom (1/df) when ρ = √½, using 10,000 replications of each 

sample size, n = {10, 20, 40, 80, 160, 320, 640, 1280 & 25, 50, 100, 200, 400, 800, 1600, 2500}. 

Figure 1 reveals that 𝑆𝑆22 approximately halves RE’s bias and that doubling the sample size of the 

original study halves the bias of each again.    

To be more precise, the biases of UWLS with inverse 𝑆𝑆22 weights are a near exact 

function of the inverse of degrees of freedom (1/df):   

 
   𝐵𝐵𝑖𝑖𝐵𝐵𝑠𝑠𝑖𝑖 =  .000069 + .508 � 1

𝑑𝑑𝑑𝑑𝑖𝑖
�            (7) 

       t    =    (1.67)      (505.8)  ;  R2 = .9999453 
 

The inverse of degrees of freedom, � 1
𝑑𝑑𝑑𝑑𝑖𝑖
�, explains over 99.99% of the bias of UWLS (R2 ≈ 

99.995%) leaving a 95% margin of error of .0003.  Through numerical analysis, we know that 

the bias of the meta-analysis of PCCs is a function of df, and that any remaining error is 

negligible.  

A century ago, Fisher4 observed that the: “sampling distribution of the partial correlation 

obtained from n pairs of values, when one variable is eliminated, is the same as the random 

sampling distribution of a total correlation derived from (n-1) pairs. By mere repetition of the 

above reasoning it appears that when s variates are eliminated the effective size of the sample is 

diminished to (n-s)” (p. 330).  This suggests that fine-tuning the degrees of freedom in PCC’s 

transformation formula may reduce or practically eliminate this bias. Further simulations confirm 

that this is indeed the case. 

Following Fisher’s observation, consider the simple bivariate correlation: 

 

𝑟𝑟 = 𝑆𝑆𝑥𝑥𝑥𝑥
𝑆𝑆𝑥𝑥∙𝑆𝑆𝑥𝑥

 = ∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�)(𝑌𝑌𝑖𝑖 − 𝑌𝑌�)
�∑(𝑋𝑋𝑖𝑖 − 𝑋𝑋�)2  ∙ �∑(𝑌𝑌𝑖𝑖 − 𝑌𝑌�)2
�   .         (8) 
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The sample covariance, 𝑆𝑆𝑥𝑥𝑥𝑥, has degrees of freedom (n-2), because two parameters, 𝜇𝜇𝑥𝑥 and 𝜇𝜇𝑥𝑥, 

must be first estimated from a sample of n pairs of observations. Each sample variance, 𝑆𝑆𝑥𝑥2 and 

𝑆𝑆𝑥𝑥2, has (n-1) has degrees of freedom; thus, the denominator is (n-1).  This suggests that a 

correction for degrees of freedom, (n-2)/(n-1), might reduce the small-sample bias of meta-

analysis weighted averages that is revealed in Table 1. When the small-sample bias is 

proportional to 1/df and df = (n-1) multiplying by (n-2)/(n-1) would correct this small-sample 

bias. Table 2 reports the random-effects, small-sample correction, REss, where each sample PCC 

is first multiplied by (n-2)/(n-1) before the usual random-effects formulae are applied.  REss 

greatly reduces the small-sample biases—see Table 1.  

These small-sample corrections of PCCs, however, should not be interpreted as estimates 

of individual PCCs.  It is widely known that individual correlation estimates, and PCCs, are 

biased downward (e.g., Olkin and Pratt15). Applying this small-sample adjustment would then 

only make a small downward bias worse. We propose reporting this small-correction correction, 

(n-2)/(n-1), only for meta-analysis weighted averages while ignoring this small-sample 

adjustment correction of the individual PCCs. 

 Table 2 also reports the statistical properties of a new meta-analysis weighted average, 

UWLS+3, that reduces bias to scientific negligibility. UWLS+3 uses the same simulation design 

as before but substituting degrees of freedom that are three larger than the multiple regression’s 

degrees of freedom into PCC’s transformation formula, eq. (2).  That is, we first calculate PCC 

as: 

 
 𝑟𝑟𝑝𝑝 = 𝑡𝑡

�𝑡𝑡2 + 𝑑𝑑𝑑𝑑+3�              (9) 

 
for 𝑑𝑑𝑑𝑑+3 = 𝑛𝑛 − 𝑠𝑠 + 1 with s as the number of independent variables in the multiple regression 

held constant in the calculation of the partial correlation of interest (i.e., 𝑠𝑠 = 𝑗𝑗 − 1). As displayed 

in Table 2, UWLS+3 eliminates all biases to within < +.001, and its average absolute bias is only 

.0002.  Table 2 assumes that either there are two independent variables in the multiple regression 

(𝑗𝑗 = 2) or four (i.e., 𝑗𝑗 = 4).  To ensure broader generalizability, Supplement Table S1 reports the 
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same simulation design as Table 2, except j = 6 &10.  Induction suggests that if you can prove 

trivial bias for one (i.e., s =1; Table 2) and trivial bias for some random s (e.g., s = 3), then trivial 

biases generalize to any s (e.g., s = {5, 9}, Table S1). As a further corroboration of the effective 

elimination of meta-analysis bias, Table S2 reports the same simulation design but with different 

values of the population partial correlation coefficient, ρ ={.9487; .2425; 0}.  

 Now that we have found ways to reduce these biases to scientific triviality, what causes 

these biases of the conventional meta-analysis of partial correlations?  The simple answer is that 

both formulas for the variance of PCCs are themselves a function of the PCC. Because the 

weights of meta-analysis are a strictly increasing function of 𝑟𝑟𝑝𝑝2, it follows that for all 𝑟𝑟𝑝𝑝2≠ {0 or 

1} positive sampling errors are assigned more influence in pinning down the meta-analysis 

estimate compared to negative sampling errors of the same magnitude.  In all meta-analyses that 

use inverse variance weights, based on either 𝑆𝑆12 or 𝑆𝑆22, an upwards bias in magnitude will arise: 

the absolute expected value delivered by the meta-analysis will surpass | ρ | if the true correlation 

is not 0 or 1.  

Let us assume, for instance, that ρ = 0.7 and examine how estimates with errors of the same 

magnitude but different signs ( + 0.2) are weighted in meta-analysis.  For 𝑆𝑆22, an UWLS estimate 

with a sampling error of +0.2 is assigned a weight proportional to 1/.19 = 5.26, in stark contrast 

to 1/.75 = 1.333 for a -0.2 sampling error.  Here estimates with positive errors are assigned 

nearly 4 times more influence than estimates with negative errors but equal in size.  Few 

sampling errors will in practice be as large as + 0.2, but the aforementioned principle of 

asymmetric weighting as the root of bias in conventional meta-analysis of partial correlations 

holds in general: for all sizes of sampling errors and various meta-analysis estimators.  Because 

RE’s weights are the inverse of the sampling variance plus a constant (τ2), this asymmetric 

weighting of sampling errors is moderated, but not eliminated, by RE.  Table 1 shows that RE’s 

biases are somewhat smaller than UWLS’, just as we would expect, and these differences are 

especially clear for small samples when 𝑆𝑆12 is used. Asymmetric weighting of sampling errors 

biases weighted averages upwards in magnitude. Table 1 confirms these biases.  

For bivariate correlations, this issue that the variance is a function of the effect size and that 

this may be problematic for meta-analysis is widely known. A solution is to convert correlations 

to Fisher z’s, calculate the meta-analysis estimate of the mean and its related statistics, then 
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convert these terms of Fisher zs back to correlations for the purpose of interpretation.16 As 

Fisher4 noted, what is true for correlations is true for partial correlations after degrees of freedom 

are adjusted for the number of variables eliminated, s. Tables 2 and S1 also report the biases, 

RMSEs, and coverage rates for random effect estimates of Fisher’s z that have been converted 

back to PCCs.  Using Fisher’s z eliminates most conventional meta-analysis bias. Its biases and 

MSEs are nearly the same as the simple RE correction for small-sample bias, However, in all 

cases and by all criteria, UWLS+3, has better statistical properties than either Fisher’s z or REss. 

Although Fisher’s z and REss produce biases larger than rounding error only for small samples 

and medium or larger correlations, UWLS+3’s bias is still ten times smaller, see Figure 2. 

Likewise, UWLS+3’s RMSEs are smaller, and its coverage rates are closer to the nominal 95% 

than Fisher’s z or REss. In fact, REss CIs are too narrow for large PCCs. Practically speaking, 

however, all three: Fisher’s z, REss, and UWLS+3 solve this problem of biased meta-analyses of 

partial correlations in the vast majority of cases even though UWLS+3 is slightly better. 

 

3.3      Heterogeneity  

Notable heterogeneity across studies within an area of research is common in all disciplines. In 

psychology, for example, the observed variance from study-to-study is about 4 times larger than 

what reported standard errors imply (i.e., median I2 = 74%).17 To ensure that partial correlation’s 

biases are robust to heterogeneity, we have modified the same simulation design to produce 

heterogeneity at levels seen in psychology. Tables 3 and 4 report the same simulations as Tables 

1 and 2, except that random heterogeneity is added to each study’s estimated correlation in each 

meta-analysis. We first convert each randomly generated estimated correlation to Cohen’s d, add 

a random normal deviation with mean zero and standard deviation {.5, .3, .2d} as ρ is: {0.7071, 

0. 3162, 0.1104}, and, lastly, transform this back to a partial correlation. We transform to 

Cohen’s d in this way to produce random heterogeneity consistent with the random-effect model 

and to reproduce roughly the same distribution of heterogeneity as seen in psychology.v Table 3 

shows that the biases of the meta-analysis of correlations remain, while Table 4 confirms that 

                                                 
v Generating heterogeneity though random variations to X1’s regression coefficient, 𝛽𝛽1=1 + N(0, .2) produces 
approximately same overall results as Table 3 and Table 4. 
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Fisher’s z and the small-sample corrections introduced here consistently reduce these biases to 

scientific negligibility.  

 

4. DISCUSSION 

Meta-analyses of partial correlation coefficients (PCC) are generally biased. We offer new 

solutions: UWLS+3 and the small-sample correction, REss.  Although these biases are ubiquitous, 

the good news is that they practically and scientifically disappear when the primary studies 

employ larger samples (n > 200).  Thus, these biases will typically not be a notable factor in the 

meta-analysis of econometric studies in economics and finance, which often involve hundreds of 

observations or more.vi Nonetheless, for many areas of education, business, psychology, 

medicine and health, meta-analysts need to use UWLS+3, REss, or Fisher’s z in the meta-analysis 

of PCCs.  

 An important limitation to our study is that the primary research literatures will typically 

be much richer than what our simulations have assumed. We abstract from such complexities to 

isolate and detect these biases and then to understand their underlying cause. However, many 

meta-analyses will include some studies which may be sufficiently large to have negligible bias, 

which will likely moderate the weighted averages of these biases. Thus, in most social science 

applications, it is unlikely that the bias of the meta-analysis of partial correlation coefficients will 

be as large as those revealed here in small samples.  

Both UWLS+3 and REss are easy to implement. To calculate UWLS+3, meta-analysts 

merely need to add 3 to df in PCC’s transformation formula, eq. (2), and the formula that 

calculates PCC’s variance, 𝑆𝑆22, eq. (4).  UWLS+3 is the simple regression coefficient, eq. (6), and 

it can be estimated using any regression software. Note that UWLS’ regression does not have an 

intercept (or a ‘constant’). Aside from small improvements to bias, MSE, and coverage rates 

over Fisher’s z, UWLS+3’s advantage lies in its computational simplicity and the clarity of its 

interpretation.  

                                                 
vi Across 358 economic meta-analyses about 2/3rds of 174,542 estimates are computed from sample sizes larger than 
200.19  
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Unlike the meta-analysis of Fisher’s z, UWLS+3 is a partial correlation and can be 

understood entirely as such. Neither UWLS+3 nor REss need to be transformed back to a 

correlation to be interpretable. This is particularly helpful for multiple meta-regression analysis 

(MRA). In economic applications, meta-analyses of PCCs are common and frequently involve a 

dozen or more moderator variables. To understand the impact of important MRA coefficients, it 

is necessary to interpret them in terms of the effect size studied, in this case partial correlation 

coefficients. When Fisher’s zs are the object of meta-analysis and MRA, it is easy to misinterpret 

MRA results as correlations. With multiple MRA, the inverse Fisher’s z transformation, PCC 

= 𝑒𝑒�
2∙𝑍𝑍−1
 2∙𝑍𝑍+1�, would need to be separately employed multiple times if Fisher’s zs are meta-

analyzed. 

Computational simplicity and clarity of interpretation are also advantages of REss. When 

there is little or no heterogeneity, Table 2, UWLS+3 dominates both Fisher’s z and REss. 

However, REss has a limitation not seen in either UWLS+3 or Fisher’s z. When the ‘true’ 

correlation is very large, ρ = .9487, REss has notably larger biases than either UWLS+3 or 

Fisher’s z. However, we have not seen average PCCs as large .7 in any economics meta-

analysis,vii and no bivariate average correlation (RE) is has an absolute value larger than .6 

among the 108 Psychological Bulletin meta-analyses.17  

 

V.  CONCLUSION 

We find that all meta-analyses of partial correlations are biased, and we offer simple remedies 

for these biases, UWLS+3 and REss. Both make a simple adjustment to the degrees of freedom 

used to calculate partial correlations and thereby render trivial any remaining bias. UWLS+3 

outperforms REss and the more cumbersome application of Fisher’s z, but all three reduce bias to 

trivial magnitudes in the great majority of practical applications. Our simulations also reveal that 

all biases are small-sample biases (n < 200). Thus, in applications where primary studies 

typically have hundreds and even more observations, PCCs can be meta-analyzed in any of the 

above ways without notable bias. However, for many fields in the social and the medical 

                                                 
vii Among 151 meta-analyses of partial correlations for which we have data, the UWLS estimate ranges from -0.45 
to 0.55. The median absolute UWLS is 0.021.19  
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sciences where small-sample studies dominate, these biases are easily avoidable by employing 

either UWLS+3 or REss. 
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FIGURE 1: Biases of random-effects and the unrestricted weight least square. Each point 
represents an average bias across 10,000 replications. RE1bias is random effects’ bias that use 
PCC variance, 𝑆𝑆12, from eq. (3). UWLS2bias is UWLS’ bias using 𝑆𝑆22  from eq. (4). 

0

.02

.04

.06

.08

.1

.12

.14

Bi
as

0 .02 .04 .06 .08 .1 .12 .14
1/df

UWLS2bias
RE1bias

https://onlinelibrary.wiley.com/doi/full/10.1002/jrsm.1631
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Stanley%2C+T+D
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Doucouliagos%2C+Hristos


 
 

13 
 

 
  



 
 

14 
 

 

 

FIGURE 2: Biases of the meta-analysis of Fisher’s z converted back to PCC (Z Bias), the 
unrestricted weight least squares with 3 additional degrees of freedom (UWLS+3), and the 
random-effect’s estimate of the mean, REss, using 𝑆𝑆22, from eq. (3) and the small-sample 
adjustment (n-2)/(n-1) for ρ = √½ and 10,000 replications.  See Table 2 and its discussion. 
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Table 1: The meta-analyses of PCCs (RE and UWLS) using different formulae for PCC’s variance 

Notes: ρ is the ‘true’ population mean partial correlation coefficient (PCC).  n is the sample size used in the primary study’s multiple regression. Bias is the difference between the meta-analysis 
estimate and ρ calculated from 50 estimated partial correlation coefficients and averaged across 10,000 replications. RMSE is the square root of the mean squared error.  Coverage is the proportion of 
10,000 meta-analyses’ 95% confidence intervals that contain ρ. RE is the random-effect’s estimate of the mean, and UWLS is the unrestricted weighted least squares’ estimate of the mean. The 
subscripts (1 and 2) refer to the use of either the PCC variance, 𝑆𝑆12, from eq. (3) or 𝑆𝑆22 from eq. (4) to calculate the RE and UWLS weighted averages. 

 

  

Design Bias RMSE Coverage 
ρ n RE1 RE2 UWLS1 UWLS2 RE1 RE2 UWLS1 UWLS2 RE1 RE2 UWLS1 UWLS2 

.7071 25 .0455 .0233 .0540 .0233 .0478 .0278 .0568 .0278 .1428 .8521 .0588 .3787 

.7071 50 .0223 .0108 .0254 .0108 .0245 .0149 .0277 .0149 .4103 .9497 .2954 .5928 

.7071 100 .0111 .0053 .0125 .0053 .0131 .0088 .0145 .0088 .6619 .9796 .5788 .7136 

.7071 200 .0055 .0026 .0061 .0026 .0075 .0057 .0080 .0057 .8109 .9878 .7714 .7734 

.7071 400 .0028 .0013 .0031 .0013 .0045 .0038 .0048 .0038 .8824 .9911 .8585 .8025 

.3162 25 .0347 .0173 .0490 .0194 .0461 .0336 .0591 .0348 .7358 .8987 .5843 .8312 

.3162 50 .0179 .0083 .0216 .0089 .0265 .0208 .0295 .0211 .8327 .9329 .7810 .8900 

.3162 100 .0091 .0042 .0104 .0045 .0161 .0138 .0170 .0139 .8892 .9469 .8714 .9118 

.3162 200 .0045 .0020 .0050 .0022 .0102 .0093 .0105 .0093 .9246 .9612 .9127 .9278 

.3162 400 .0022 .0009 .0024 .0010 .0068 .0065 .0069 .0065 .9424 .9599 .9339 .9349 

.1104 25 .0134 .0065 .0198 .0079 .0360 .0321 .0412 .0328 .9114 .9413 .8771 .9234 

.1104 50 .0073 .0034 .0088 .0039 .0225 .0208 .0234 .0210 .9332 .9517 .9246 .9410 

.1104 100 .0034 .0015 .0040 .0017 .0150 .0144 .0152 .0145 .9431 .9532 .9362 .9430 

.1104 200 .0017 .0007 .0019 .0008 .0102 .0100 .0103 .0100 .9495 .9548 .9424 .9468 

.1104 400 .0009 .0005 .0010 .0005 .0071 .0070 .0071 .0070 .9596 .9623 .9533 .9535 
Average .0122 .0059 .0150 .0063 .0196 .0153 .0221 .0155 .7953 .9482 .7520 .8310 
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Table 2: REss, REz, and UWLS+3 meta-analyses of partial correlations 

Notes: ρ is the ‘true’ population mean partial correlation coefficient (PCC).  n is the sample size used in the primary study’s multiple regression. Bias 
is the difference between the meta-analysis estimate and ρ calculated from 50 estimated partial correlation coefficients and averaged across 10,000 
replications. RMSE is the square root of the mean squared error.  Coverage is the proportion of 10,000 meta-analysis 95% confidence intervals that 
contain ρ. REss is the random-effect’s estimate of the mean using 𝑆𝑆22, from eq. (3) and the small-sample adjustment (n-2)/(n-1). UWLS+3 is the 
unrestricted weighted least squares’ estimate of the mean using 𝑆𝑆22 from eq. (4) and df+3 as the degrees of freedom in PCC’s formula.  REz is the 
random-effect’s estimate of Fisher’s z converted back to PCC.  aAverage biases are averages across the absolute values of the biases. Biases reported 
as ‘.0000’ are < |+.00005|.  

  
 
 

2 IVs:  Partial Correlation of 𝑿𝑿𝟏𝟏 from  𝒀𝒀𝒊𝒊 =  𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝑿𝑿𝟏𝟏𝒊𝒊 + 𝜷𝜷𝟐𝟐𝑿𝑿𝟐𝟐𝒊𝒊 + 𝜺𝜺𝒊𝒊    
Design Bias RMSE Coverage 

ρ n REss REz UWLS+3 REss REz UWLS+3 REss REz UWLS+3 
.7071 25 -.0070 .0078 .0009 .0161 .0168 .0155 .9891 .9281 .9431 
.7071 50 -.0037 .0036 .0001 .0107 .0109 .0105 .9914 .9460 .9511 
.7071 100 -.0019 .0017 -.0001 .0075 .0073 .0072 .9923 .9530 .9514 
.7071 200 -.0010 .0008 -.0001 .0051 .0051 .0051 .9938 .9539 .9503 
.7071 400 -.0004 .0004 .0000 .0035 .0036 .0036 .9953 .9551 .9480 
.3162 25 .0050 .0067 .0008 .0281 .0284 .0275 .9516 .9492 .9408 
.3162 50 .0017 .0032 .0003 .0188 .0190 .0187 .9569 .9519 .9458 
.3162 100 .0008 .0014 .0000 .0129 .0131 .0130 .9626 .9553 .9460 
.3162 200 .0005 .0006 -.0002 .0091 .0091 .0091 .9646 .9567 .9482 
.3162 400 .0002 .0004 .0000 .0063 .0064 .0064 .9659 .9556 .9497 
.1104 25 .0016 .0024 .0002 .0306 .0306 .0301 .9478 .9545 .9368 
.1104 50 .0007 .0011 .0000 .0208 .0206 .0203 .9496 .9593 .9481 
.1104 100 .0004 .0007 .0001 .0143 .0143 .0142 .9527 .9584 .9489 
.1104 200 .0003 .0002 -.0001 .0099 .0100 .0100 .9573 .9569 .9485 
.1104 400 .0001 .0001 -.0001 .0069 .0071 .0070 .9609 .9564 .9495 

Average .0017 .0021 .0002a .0134 .0135 .0132 .9688 .9527 .9471 
4 IVs:  Partial Correlation of 𝑿𝑿𝟏𝟏 from  𝒀𝒀𝒊𝒊 =  𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝑿𝑿𝟏𝟏𝒊𝒊 + 𝜷𝜷𝟐𝟐𝑿𝑿𝟐𝟐𝒊𝒊 + 𝜷𝜷𝟑𝟑𝑿𝑿𝟑𝟑𝒊𝒊 + 𝜷𝜷𝟒𝟒𝑿𝑿𝟒𝟒𝒊𝒊 +  𝜺𝜺𝒊𝒊 

.7071 25 -.0048 .0083 .0009 .0160 .0163 .0164 .9920 .9284 .9424 

.7071 50 -.0032 .0037 -.0001 .0108 .0107 .0106 .9930 .9434 .9447 

.7071 100 -.0017 .0018 -.0001 .0074 .0073 .0073 .9929 .9513 .9512 

.7071 200 -.0009 .0008 -.0001 .0051 .0050 .0050 .9949 .9554 .9506 

.7071 400 -.0004 .0004 .0000 .0036 .0036 .0036 .9935 .9556 .9490 

.3162 25 .0064 .0063 .0000 .0297 .0289 .0289 .9491 .9520 .9380 

.3162 50 .0020 .0029 -.0001 .0192 .0191 .0191 .9551 .9545 .9456 

.3162 100 .0008 .0014 -.0001 .0131 .0129 .0130 .9606 .9588 .9516 

.3162 200 .0005 .0006 -.0001 .0090 .0091 .0092 .9658 .9592 .9518 

.3162 400 .0002 .0003 -.0001 .0064 .0063 .0065 .9642 .9591 .9554 

.1104 25 .0025 .0029 .0005 .0325 .0312 .0316 .9440 .9553 .9379 

.1104 50 .0010 .0012 .0000 .0212 .0209 .0209 .9508 .9580 .9463 

.1104 100 .0004 .0007 .0001 .0145 .0144 .0145 .9548 .9553 .9473 

.1104 200 .0001 .0002 -.0001 .0102 .0100 .0101 .9508 .9562 .9472 

.1104 400 -.0001 .0001 .0000 .0070 .0071 .0071 .9597 .9543 .9458 
Average .0017 a .0021 .0002a .0137 .0138 .0135 .9681 .9531 .9470 
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Table 3: The meta-analyses of PCCs (RE and UWLS) using different formulae for PCC’s variance and with heterogeneity 

Notes: ρ is the ‘true’ population mean partial correlation coefficient (PCC). Sample sizes as the same as reported in Tables 1 and 2.  0 < I2< 1 is a relative measure of heterogeneity. Bias is the difference 
between the meta-analysis estimate and ρ calculated from 50 estimated partial correlation coefficients and averaged across 10,000 replications. RMSE is the square root of the mean squared error.  
Coverage is the proportion of 10,000 meta-analyses’ 95% confidence intervals that contain ρ. RE is the random-effect’s estimate of the mean, and UWLS is the unrestricted weighted least squares’ 
estimate of the mean. The subscripts (1 and 2) refer to the use of either the PCC variance, 𝑆𝑆12, from eq. (3) or 𝑆𝑆22 from eq. (4) to calculate the RE and UWLS weighted averages. aAverage biases are 
averages across the absolute values of the biases. 

Design Bias RMSE Coverage 
ρ I2 RE1 RE2 UWLS1 UWLS2 RE1 RE2 UWLS1 UWLS2 RE1 RE2 UWLS1 UWLS2 

.7071 .369 .0385 .0245 .0710 .0270 .0435 .0317 .0736 .0328 .3931 .7546 .0322 .4151 

.7071 .559 .0124 .0068 .0459 .0149 .0214 .0198 .0485 .0216 .7771 .8724 .1362 .6138 

.7071 .731 -.0012 -.0045 .0347 .0095 .0156 .0168 .0374 .0169 .9018 .9143 .2611 .7180 

.7071 .848 -.0086 -.0105 .0292 .0069 .0171 .0184 .0320 .0149 .8657 .8746 .3571 .7586 

.7071 .920 -.0125 -.0136 .0268 .0058 .0190 .0198 .0296 .0140 .7970 .8217 .4035 .7753 

.3162 .404 .0241 .0105 .0601 .0209 .0429 .0355 .0715 .0396 .8424 .9134 .5489 .8360 

.3162 .516 .0087 .0011 .0343 .0109 .0285 .0266 .0445 .0287 .9099 .9354 .7167 .8845 

.3162 .668 .0004 -.0036 .0232 .0064 .0225 .0225 .0330 .0233 .9396 .9396 .8015 .9116 

.3162 .801 -.0038 -.0058 .0184 .0045 .0205 .0209 .0279 .0207 .9459 .9404 .8370 .9224 

.3162 .890 -.0061 -.0071 .0159 .0034 .0202 .0205 .0257 .0198 .9312 .9282 .8543 .9203 

.1104 .319 .0108 .0049 .0217 .0079 .0378 .0346 .0457 .0360 .9182 .9334 .8641 .9168 

.1104 .363 .0049 .0015 .0108 .0037 .0263 .0251 .0293 .0257 .9332 .9398 .9102 .9343 

.1104 .498 .0017 -.0001 .0063 .0019 .0204 .0200 .0221 .0204 .9336 .9352 .9242 .9342 

.1104 .661 .0001 -.0008 .0044 .0012 .0170 .0169 .0182 .0172 .9447 .9448 .9344 .9415 

.1104 .795 -.0010 -.0015 .0032 .0006 .0156 .0156 .0165 .0158 .9435 .9410 .9369 .9419 
Average .0090a .0065a .0271 .0084 .0245 .0230 .0370 .0232 .8651 .9059 .6346 .8283 
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Table 4: REss, REz, and UWLS+3 meta-analyses of partial correlations with heterogeneity 

Notes: ρ is the ‘true’ population mean partial correlation coefficient (PCC).  The sample sizes of the primary study’s multiple regressions are the 
same as reported in Tables 1 and 2. Bias is the difference between the meta-analysis estimate and ρ calculated from 50 estimated partial correlation 
coefficients and averaged across 10,000 replications. RMSE is the square root of the mean squared error.  Coverage is the proportion of 10,000 
meta-analysis 95% confidence intervals that contain ρ. REss is the random-effect’s estimate of the mean using 𝑆𝑆22, from eq. (4) and the small-sample 
adjustment (n-2)/(n-1). UWLS+3 is the unrestricted weighted least squares’ estimate of the mean using 𝑆𝑆22 from eq. (4) and df+3 as the degrees of 
freedom in PCC’s formulae.  REz is the random-effect’s estimate of Fisher’s z converted back to PCC.  aAverage biases are averages across the 
absolute values of the biases. Biases reported as ‘.0000’ are < |+.00005|.  

2 IVs:  Partial Correlation of 𝑿𝑿𝟏𝟏 from  𝒀𝒀𝒊𝒊 =  𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝑿𝑿𝟏𝟏𝒊𝒊 + 𝜷𝜷𝟐𝟐𝑿𝑿𝟐𝟐𝒊𝒊 + 𝜺𝜺𝒊𝒊    
Design Bias RMSE Coverage 

ρ I2 REss REz UWLS+3 REss REz UWLS+3 REss REz UWLS+3 
.7071 .369 -.0058 .0024 .0041 .0199 .0199 .0203 .9614 .9404 .9465 
.7071 .559 -.0068 -.0016 .0043 .0192 .0165 .0167 .9110 .9429 .9378 
.7071 .730 -.0113 -.0038 .0043 .0198 .0152 .0149 .8717 .9392 .9397 
.7071 .848 -.0140 -.0046 .0045 .0205 .0145 .0140 .8233 .9340 .9333 
.7071 .919 -.0154 -.0053 .0044 .0210 .0144 .0136 .7897 .9279 .9317 
.3162 .404 -.0004 .0037 .0020 .0333 .0327 .0331 .9305 .9421 .9388 
.3162 .515 -.0049 .0001 .0018 .0265 .0256 .0261 .9328 .9470 .9456 
.3162 .669 -.0068 -.0013 .0022 .0233 .0222 .0226 .9316 .9427 .9447 
.3162 .800 -.0075 -.0022 .0022 .0215 .0204 .0207 .9274 .9398 .9416 
.3162 .890 -.0077 -.0025 .0023 .0204 .0190 .0192 .9270 .9430 .9461 
.1104 .320 .0012 .0018 .0003 .0326 .0334 .0335 .9413 .9461 .9373 
.1104 .364 -.0006 .0005 .0003 .0245 .0248 .0249 .9405 .9427 .9417 
.1104 .500 -.0006 .0001 .0004 .0193 .0199 .0201 .9460 .9415 .9440 
.1104 .661 -.0010 -.0001 .0006 .0167 .0170 .0172 .9449 .9445 .9482 
.1104 .795 -.0014 -.0004 .0004 .0154 .0154 .0155 .9450 .9460 .9506 

Average .0057a .0020a .0023 .0223 .0207 .0208 .9149 .9413 .9418 
4 IVs:  Partial Correlation of 𝑿𝑿𝟏𝟏 from  𝒀𝒀𝒊𝒊 =  𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝑿𝑿𝟏𝟏𝒊𝒊 + 𝜷𝜷𝟐𝟐𝑿𝑿𝟐𝟐𝒊𝒊 + 𝜷𝜷𝟑𝟑𝑿𝑿𝟑𝟑𝒊𝒊 + 𝜷𝜷𝟒𝟒𝑿𝑿𝟒𝟒𝒊𝒊 +  𝜺𝜺𝒊𝒊 

.7071 .349 -.0031 .0033 .0044 .0195 .0206 .0209 .9671 .9372 .9422 

.7071 .549 -.0062 -.0016 .0042 .0191 .0165 .0167 .9183 .9459 .9430 

.7071 .726 -.0110 -.0039 .0042 .0195 .0152 .0148 .8738 .9402 .9421 

.7071 .847 -.0139 -.0049 .0043 .0203 .0147 .0140 .8284 .9331 .9367 

.7071 .919 -.0152 -.0050 .0048 .0208 .0141 .0135 .7963 .9325 .9326 

.3162 .398 .0008 .0048 .0025 .0347 .0338 .0342 .9272 .9461 .9386 

.3162 .508 -.0041 .0005 .0021 .0267 .0259 .0264 .9348 .9440 .9433 

.3162 .665 -.0069 -.0016 .0018 .0232 .0222 .0225 .9311 .9425 .9439 

.3162 .800 -.0073 -.0019 .0025 .0213 .0202 .0205 .9323 .9454 .9465 

.3162 .889 -.0081 -.0023 .0026 .0207 .0192 .0195 .9262 .9413 .9433 

.1104 .323 .0012 .0020 .0004 .0344 .0346 .0346 .9392 .9473 .9365 

.1104 .358 -.0001 .0007 .0004 .0247 .0251 .0252 .9410 .9437 .9421 

.1104 .495 -.0010 .0005 .0009 .0199 .0198 .0200 .9392 .9446 .9462 

.1104 .658 -.0011 -.0005 .0002 .0167 .0171 .0173 .9403 .9390 .9431 

.1104 .794 -.0014 -.0004 .0005 .0153 .0154 .0156 .9451 .9410 .9457 
Average .0054a .0023a .0024 .0224 .0209 .0210 .9160 .9416 .9417 
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