
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

HISTORICAL CALIBRATION OF SVJD 
MODELS WITH DEEP LEARNING 
 
 
 
 
 
 
 
 
 
 
Milan Fičura 
Jiří Witzany 
 
 
 
 
 
IES Working Paper 36/2023 
 
 
 
 
 



 

 
Institute of Economic Studies,  

Faculty of Social Sciences,  
Charles University in Prague 

 
[UK FSV – IES] 

 
Opletalova 26 

CZ-110 00, Prague 
E-mail : ies@fsv.cuni.cz 

http://ies.fsv.cuni.cz 
 
 

 
 

Institut ekonomických studií 
Fakulta sociálních věd 

Univerzita Karlova v Praze 
 

Opletalova 26 
110 00  Praha 1 

 
E-mail : ies@fsv.cuni.cz 

http://ies.fsv.cuni.cz 
 

 
 

Disclaimer: The IES Working Papers is an online paper series for works by the faculty and 
students of the Institute of Economic Studies, Faculty of Social Sciences, Charles University in 
Prague, Czech Republic. The papers are peer reviewed. The views expressed in documents served 
by this site do not reflect the views of the IES or any other Charles University Department. They 
are the sole property of the respective authors. Additional info at: ies@fsv.cuni.cz 
 
Copyright Notice: Although all documents published by the IES are provided without charge, they 
are licensed for personal, academic or educational use. All rights are reserved by the authors. 
 
Citations: All references to documents served by this site must be appropriately cited.  
 
Bibliographic information: 
Fičura M., Witzany J. (2023): " Historical Calibration of SVJD Models with Deep Learning " IES 
Working Papers 36/2023. IES FSV. Charles University. 
 

This paper can be downloaded at: http://ies.fsv.cuni.cz 

mailto:IES@Mbox.FSV.CUNI.CZ
http://ies.fsv.cuni.cz/
mailto:IES@Mbox.FSV.CUNI.CZ
http://ies.fsv.cuni.cz/
mailto:ies@fsv.cuni.cz
http://ies.fsv.cuni.cz/


 

Historical Calibration of SVJD Models 
with Deep Learning 

 

Milan Fičura1 

Jiří Witzany2 
 

1Faculty of Finance and Accounting, Prague University of Economics and Business, 
Czech Republic. E-mail: milan.ficura@vse.cz (corresponding author) 

2Faculty of Finance and Accounting, Prague University of Economics and Business, 
Czech Republic. E-mail: jiri.witzany@vse.cz 

 
December 2023 

Abstract: 
We propose how deep neural networks can be used to calibrate the parameters of 
Stochastic-Volatility Jump-Diffusion (SVJD) models to historical asset return time 
series. 1-Dimensional Convolutional Neural Networks (1D-CNN) are used for that 
purpose. The accuracy of the deep learning approach is compared with machine 
learning methods based on shallow neural networks and hand-crafted features, and 
with commonly used statistical approaches such as MCMC and approximate MLE. 
The deep learning approach is found to be accurate and robust, outperforming the 
other approaches in simulation tests. The main advantage of the deep learning 
approach is that it is fully generic and can be applied to any SVJD model from which 
simulations can be drawn. An additional advantage is the speed of the deep learning 
approach in situations when the parameter estimation needs to be repeated on new 
data. The trained neural network can be in these situations used to estimate the 
SVJD model parameters almost instantaneously. 
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1. Introduc�on 
Time-varying vola�lity is an established feature of financial �me series that plays a crucial role in risk 
management and asset pricing. Unlike GARCH models (Bollerslev, 1986) and realized vola�lity models 
(Andersen and Bollerslev, 1998) in which the condi�onal variance depends determinis�cally on past 
returns, stochas�c vola�lity (SV) models (Taylor, 1982) view the variance as an unobservable 
stochas�c process, allowing for great deal of flexibility in its specifica�on (Ghysels et al., 1996).  

Log-SV model of Taylor (1982), in which the logarithm of variance follows an AR(1) process can be 
extended in a variety of ways, including models with correla�on between vola�lity and returns 
(Harvey and Shephard, 1996), non-Gaussian innova�ons (Jacquier et al., 2004), price jumps 
(Andersen et al., 2002), vola�lity jumps (Eraker et al., 2003), infinite ac�vity jumps (Li et al., 2008), 
regime switching (So, et al., 1998) or long-memory (Breidt, et al., 1998, Harvey, 1998). 

The es�ma�on of SV models is, however, difficult, as their likelihood func�on involves intractable 
integrals over the latent vola�lity process. Wide range of frequen�st and Bayesian approaches have 
been proposed to cope with the es�ma�on problem (Bos, 2012). 

Bayesian MCMC sampling (Jacquier, 1994) represents one of the most popular approaches for SV 
models es�ma�on, with increasingly efficient MCMC samplers developed for most of the basic SV 
model variants (Kim, Shephard and Chib, 1998, Omori et al., 2007, Nakajima and Omori, 2012, 
Kastner and Frühwirth-Schnater, 2014, Hosszejni and Kastner, 2019). Efficient MCMC 
implementa�ons for some of the SV model variants are available in R packages such as ASV (Omori 
and Hashimoto, 2022) or stochvol (Kastner, 2016, Hosszejni and Kastner, 2021, Hosszejni and Kastner, 
2023). 

A drawback of MCMC is that it is model-specific, requiring major adjustments of the algorithm for any 
model modifica�on. Among more generic Bayesian approaches is Par�cle MCMC (Andrieu et al., 
2010), and the par�cle learning methods (Liu and West, 2001, Carvalho, 2010, Fulop and Li, 2013, 
Chopin et al., 2013). Certain fine-tuning of the par�cle filters is, however, s�ll needed for good 
performance. 

Frequen�st approaches to SV models es�ma�on include moment-based methods, such as GMM 
(Andersen and Sorensen, 1996) and EMM (Andersen et al., 1999), quasi maximum likelihood (QML) 
methods (Harvey et al., 1994), Monte-Carlo methods based on Importance Sampling (Sandman and 
Koopman, 1996, Liesenfeld and Richard, 2003), and methods that approximate the likelihood func�on 
with numerical integra�on (Friedman and Harris, 1998, Watanabe, 1999). 

Efficient MLE methods, based on Laplace approxima�on and automa�c differen�a�on (Skaug and Yu, 
2014), or numerical integra�on (Bégin and Boudreault, 2021) are implemented in the R packages 
stochvolTMB (Wahl, et al., 2021) and SVDNF (Mahjoubi et al., 2023) respec�vely. 

While the current repertoire of SV model es�ma�on tools allows for efficient es�ma�on of the most 
common SV model variants, none of them offers a fully generic method to es�mate any type of SV 
model without addi�onal modifica�ons and fine-tuning of the es�ma�on algorithm. The main 
contribu�on of our study is to propose such a generic approach based on deep neural networks 
(DNN). Our deep learning approach can es�mate parameters of any SV model as long as simula�ons 
from it can be drawn. As shown in the simula�on study, it is also highly accurate and robust, suffering 
from significantly lower miss-convergence rates than other commonly used methods such as MCMC 
or MLE. An addi�onal advantage of the DNN approach is its speed in situa�ons where the same 
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model needs to be re-es�mated mul�ple �mes as the re-es�ma�on on new data is nearly 
instantaneous. 

The proposed approach is inspired by neural network calibra�on of SV models for op�on pricing 
(Hernandez, 2017). Analogically to the SV model es�ma�on on historical return �me series, which is 
the task of our current study, the calibra�on of SV model parameters (Heston, 1993, Bates, 1996) to 
the observed op�on prices is highly computa�onally demanding. To simplify the calibra�on, it was 
proposed to u�lize a neural network (NN) to approximate either the op�on pricing model (Liu et al., 
2019, Horvath et al., 2021, Büchel, et al., 2022), the en�re model calibra�on procedure (Hernandez, 
2017, Kim et al., 2023), or the rela�onship between plain-vanilla and exo�c op�ons (Cao et al., 2022), 
resul�ng in significant speed gains as well as higher robustness (Cao et al., 2022). 

The direct approach (Hernandez, 2017) starts by simula�ng a large dataset of SV model parameter 
vectors and calcula�ng selected op�on prices for each of them. Neural network (NN) is then trained 
to predict the model parameters based on the set of calculated op�on prices. Once trained, the NN 
can be used for near-instantaneous calibra�on of the SV models to op�on prices observed on the 
market. 

As shown in Witzany and Fičura (2023a), the NN based calibra�on of SV models can be successfully 
applied also on illiquid op�on markets, with few or even zero observed op�on prices, by enhancing 
the NN predictor set with the generalized moments computed from historical asset returns �me 
series. Our paper can be viewed as an extension of this approach, focusing on the case where the SV 
model needs to be calibrated to the historical �me-series of returns only. This can be the case either 
on markets where no op�on prices are available or in situa�ons where the parameters of the SV 
model under the physical probability se�ng are needed (rather than the risk-neutral ones), such as in 
risk-management and asset pricing applica�ons. 

One of the main complica�ons in the Witzany and Fičura (2023ab) approach is the need to convert 
the historical �me-series of returns to a set of generalized moments sufficient for the SV model 
es�ma�on, which can be model-specific. To avoid this step, we replace the shallow neural network 
with a deep neural network, which can be applied to the �me series of returns directly, learning the 
transforma�ons of the return �me series needed for the SV model es�ma�on on its own. 

We use simula�on tests to compare our deep learning approach with the neural network method 
from Witzany and Fičura (2023a) and with standard sta�s�cal approaches based on MCMC 
implemented in the R package stochvol (Kastner, 2016, Hosszejni and Kastner, 2021, Hosszejni and 
Kastner, 2023) and MLE, implemented in the R package stochvolTMB (Skaug and Yu, 2014, Wahl, et 
al., 2021). The tests confirm that the proposed deep learning approach is highly accurate and robust. 

The rest of this paper is organized as follows. Sec�on 2 introduces the baseline SVJD model 
specifica�on used in our study and the NN/DNN model calibra�on approaches. Sec�on 3 presents the 
simula�on study comparing the performance NN/DNN methods with MCMC for our baseline SVJD 
model and with MCMC and MLE for the SV models implemented in the R packages stochvol and 
stochvolTMB. Finally, the Conclusion concludes the paper discusses possibili�es for future research. 

2. Neural Network es�ma�on of SVJD models 
For the illustra�on of our deep learning SV model es�ma�on approach, we use a Gaussian SVJD 
model with price jumps. This is the baseline model specifica�on on which we illustrate the 
performance of the NN based calibra�on method. Robustness of the approach is further assessed for 
alterna�ve SV model variants from the R packages stochvol and stochvolTMB in sec�ons 3.3 and 3.4. 
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2.1. SVJD model specifica�on 
Assume that the logarithmic returns 𝑟𝑟𝑡𝑡 = 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1 follow a discrete-�me process: 

𝑟𝑟𝑡𝑡 = 𝜇𝜇 + 𝜎𝜎𝑡𝑡𝜀𝜀𝑟𝑟,𝑡𝑡 + 𝐽𝐽𝑡𝑡𝑍𝑍𝑡𝑡 (1) 

Where 𝑝𝑝𝑡𝑡 denotes the logarithm of the asset price at �me 𝑡𝑡, 𝑟𝑟𝑡𝑡 is the logarithmic return, 𝜇𝜇 is the 
uncondi�onal mean, 𝜎𝜎𝑡𝑡 is the �me-varying vola�lity, 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑁𝑁(0,1) is i.i.d. Gaussian white noise, 
𝐽𝐽𝑡𝑡~𝑁𝑁�𝜇𝜇𝐽𝐽 ,𝜎𝜎𝐽𝐽� is i.i.d. Gaussian variable determining the jump sizes, and 𝑍𝑍𝑡𝑡~𝐵𝐵𝐵𝐵𝑟𝑟𝐵𝐵(𝜆𝜆)is a Bernoulli 
distributed variable determining the jump occurrences that arrive with intensity 𝜆𝜆. 

The log-variance ℎ𝑡𝑡 = log(𝜎𝜎𝑡𝑡2) is assumed to follow the AR(1) process (Taylor, 1982): 

ℎ𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽ℎ𝑡𝑡−1 + 𝛾𝛾𝜀𝜀ℎ,𝑡𝑡 (2) 

Where ℎ𝐿𝐿𝐿𝐿 = 𝛼𝛼/(1 − 𝛽𝛽) represents the long-term log-variance, 𝛽𝛽 is an AR(1) autoregressive 
parameter, 𝛾𝛾 is the vola�lity of the log-variance and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) is i.i.d. Gaussian white noise 
assumed to be uncorrelated with 𝜀𝜀𝑟𝑟,𝑡𝑡 (this will be relaxed for the SV models in sec�ons 3.3 and 3.4). 

The goal of the es�ma�on procedure is to es�mate the vector of parameters 𝜽𝜽 = �𝜇𝜇,𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝜇𝜇𝐽𝐽,𝜎𝜎𝐽𝐽, 𝜆𝜆� 
based on the observed �me series of asset returns 𝒓𝒓 = {𝑟𝑟1, … , 𝑟𝑟𝐿𝐿}. 

2.2. MCMC for SVJD model es�ma�on 
As a benchmark method to es�mate the SVJD model in the previous sec�on we use the Markov-
Chain Monte-Carlo (MCMC) method (Jacquier, 1994). MCMC allows us to sample from the posterior 
density 𝑝𝑝(𝜽𝜽∗|𝒓𝒓), where 𝜽𝜽∗ denotes a vector of all model parameters and latent states, 𝜽𝜽∗ =
{𝜽𝜽,𝑽𝑽, 𝑱𝑱,𝒁𝒁}, with 𝑽𝑽 = ln(𝒉𝒉) denotes the vector of latent stochas�c variances, 𝑱𝑱 the vector of latent 
jumps sizes and 𝒁𝒁 the vector of latent jump occurrences. Gibbs sampler is used to draw samples from 
the posterior density 𝑝𝑝(𝜽𝜽∗|𝒓𝒓) by using informa�on about the condi�onal densi�es 𝑝𝑝(𝜃𝜃𝑖𝑖∗|𝜽𝜽(−𝑖𝑖)

∗ , 𝒓𝒓). As 
the condi�onal density 𝑝𝑝�𝑉𝑉𝑖𝑖|𝑽𝑽(−𝑖𝑖),𝜽𝜽(−𝒗𝒗)

∗ ,𝒓𝒓� is intractable, we use the Accept-Reject Gibbs Sampler 
proposed in Kim, Shephard and Chib (1998) to sample 𝑉𝑉𝑖𝑖. The design of the MCMC algorithm is 
described in Appendix A. 

2.3. NN approach to SVJD model es�ma�on 
Neural Network (NN) based calibra�on approach proposed in Witzany and Fičura (2023a) uses a 
simulated dataset of parameter and return vectors �𝜽𝜽(𝑖𝑖),𝒓𝒓(𝑖𝑖)� for 𝑖𝑖 = 1, … ,𝑁𝑁 in order to train a 
shallow neural network (Mul�-Layer Perceptron, MLP) to es�mate the parameter vector 𝜽𝜽(𝑖𝑖) based 
on a set of generalized moments 𝑴𝑴(𝑖𝑖) computed from each simulated return vector 𝒓𝒓(𝑖𝑖). The goal of 
the neural network is to approximate the func�on 𝜽𝜽 = 𝑓𝑓(𝑴𝑴) describing the rela�onship between the 
parameter vector 𝜽𝜽 and the generalized moments 𝑴𝑴, making the procedure conceptually similar to 
other moment-based SV model es�ma�on methods (Andersen and Sorensen, 1996, Andersen et al., 
1999), but with the calibra�on procedure replaced with a neural network. The main prac�cal 
limita�on of the approach is the need to expertly specify the set of generalized moments 𝑴𝑴 that 
contain sufficient informa�on for the es�ma�on of 𝜽𝜽, which may differ depending on the 
specifica�on of the SV model. For our study, we selected the generalized moments 𝑴𝑴 used for the 
es�ma�on of the SVJD model with the NN approach expertly and they are described in Appendix B. 

2.4. DNN approach to SVJD model es�ma�on 
The main advantage of deep neural networks (DNN) is their ability to learn the set of predic�ve 
features from raw data, avoiding the need for expert specifica�on and fine-tuning of the relevant 
features (LeCun et al., 2015). In our DNN approach to SVJD model calibra�on we simulate a dataset of 



4 
 

parameter and return vectors �𝜽𝜽(𝑖𝑖),𝒓𝒓(𝑖𝑖)� for 𝑖𝑖 = 1, … ,𝑁𝑁 and then train a Deep Neural Network (DNN) 
to es�mate the parameter vector 𝜽𝜽(𝑖𝑖) based on the en�re vector of simulated returns 𝒓𝒓(𝑖𝑖). The neural 
network thus approximates the func�on 𝜽𝜽 = 𝑓𝑓(𝒓𝒓) describing the rela�onship between the 
parameter vector 𝜽𝜽 and the return vector 𝒓𝒓. The principle of the method is thus similar as in the NN 
approach but with the set of relevant moments learned implicitly by the DNN from the return �me 
series 𝒓𝒓. 

While many types of DNN may poten�ally be used to es�mate the func�on 𝜽𝜽 = 𝑓𝑓(𝒓𝒓)., we focus on 
the 1-Dimensional Convolu�onal Neural Networks (1D-CNN) in our study. The 1D-CNN processes the 
return vector 𝒓𝒓 with a set of 1D convolu�onal filters followed by (average) pooling layers and global 
(average) pooling a�er the last convolu�onal layer. These convolu�onal and pooling opera�ons 
convert the �me series 𝒓𝒓 into a set of features 𝑴𝑴 = 𝑔𝑔(𝒓𝒓) which are subsequently fed into a set of 
fully connected layers, in an analogical way as the generalized moments in the NN based approach, 
but with the relevant moments 𝑴𝑴 = 𝑔𝑔(𝒓𝒓) learned implicitly by the 1D-CNN. The need to manually 
finetune the set of generalized moments 𝑴𝑴 is thus avoided. The architecture of the 1D-CNN used in 
our study and the se�ngs of the training algorithm are discussed in Appendix C. 

3. Simula�on tests 
3.1. SVJD model es�ma�on – Simula�on test design 
The goal of this sec�on is to compare the accuracy of the NN/DNN based SVJD model calibra�on with 
the MCMC approach used as benchmark. To train the NN/DNN models, we draw a random dataset of 
𝑁𝑁 = 50000 parameter combina�ons 𝜽𝜽(𝑖𝑖) for 𝑖𝑖 = 1, … ,𝑁𝑁 and for each of them simulate a return 
vector 𝒓𝒓(𝑖𝑖) of length 𝑇𝑇 = 2000 by using the SVJD model described in sec�on 2.1. The iden�cal 
procedure but with dataset size 𝑁𝑁𝑂𝑂𝑂𝑂𝑡𝑡 = 500 is applied to construct the tes�ng sample. Accuracy of 
the NN/DNN, trained on the development sample is then compared with the accuracy of the MCMC 
method on the tes�ng sample. The MCMC is applied only to the tes�ng sample. 

To draw the parameter vectors 𝜽𝜽(𝑖𝑖) = �𝜇𝜇, 𝑣𝑣𝐿𝐿𝐿𝐿 ,𝛽𝛽, 𝛾𝛾, 𝜇𝜇𝐽𝐽 ,𝜎𝜎𝐽𝐽, 𝜆𝜆� we use the uniform distribu�ons: 

• 𝜇𝜇 ~ 𝑈𝑈(−0.1,0.1)/250  (mean daily return)    (mju) 
• 𝑣𝑣𝐿𝐿𝐿𝐿~ 𝑈𝑈(0.005,0.015)^2 (long-term variance of daily returns)  (varLT) 
• 𝛽𝛽 ~ 𝑈𝑈(0.79,0.99)  (log-variance AR(1) parameter)   (beta) 
• 𝛾𝛾 ~ 𝑈𝑈(0.05,0.50)  (vola�lity of the log-variance)   (gamma) 
• 𝜇𝜇𝐽𝐽 ~ 𝑈𝑈(−0.05,0.05)  (mean jump size)    (mjuJ) 

• 𝜎𝜎𝐽𝐽 ~ 𝑈𝑈(0.01,0.10)  (jump vola�lity)    (sigmaJ) 
• 𝜆𝜆 ~ 𝑈𝑈(0.005,0.05)  (daily jump probability)   (lambda) 

Where we use the transforma�on 𝛼𝛼 = ln(𝑣𝑣𝐿𝐿𝐿𝐿)(1− 𝛽𝛽) to get the parameter 𝛼𝛼 from equa�on (2). The 
parameter bounds were set to values that may be realis�cally observed for financial �me series. 

The se�ngs of the three es�ma�on methods (MLP, 1D-CNN and MCMC) are as follows: 

MCMC: MCMC algorithm described in Appendix A is used with 20 000 MCMC itera�ons and 10 000 
itera�on burn-out period. The point es�mates are computed as posterior means from the remaining 
10 000 MCMC itera�ons following the burn-out sample. 

MLP: Eight variants of the Mul�-Layer Perceptron neural network are used, alterna�vely with 1-4 
hidden layers and 20 or 30 neurons in each layer. The MLP networks are trained with the Levenberg-
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Marquardt algorithm in Matlab with the default se�ngs. The predictor set of generalized moments 
𝑴𝑴(𝑖𝑖) computed for each simulated vector 𝒓𝒓(𝑖𝑖) is described in Appendix B. 

1D-CNN: Four 1D Convolu�onal Neural Network variants are tested, alterna�vely with 3 or 4 
convolu�onal layers followed by 2 or 3 fully connected layers, each one alterna�vely with 20 or 30 
filters/neurons. Filter width and the pooling width is set to 5 and stride equal to 5 is applied in all 
pooling layers except the first one. Average pooling is used and the Leaky ReLu ac�va�on func�on is 
used in the convolu�onal and fully connected layers. The networks are trained with the Adam 
algorithm with batch size of 50, layer normaliza�on and early stopping implemented in Matlab. The 
precise architecture of the tested networks and se�ngs of the training algorithm are discussed in 
Appendix C. 

3.2. SVJD model es�ma�on – Simula�on test results 
Performance of the individual methods is assessed with the out-sample R-Squared on a tes�ng 
dataset of newly drawn 𝑁𝑁𝑂𝑂𝑂𝑂𝑡𝑡 = 500 parameter combina�ons and simulated return vectors. The 
values of the out-sample R-Squared for all methods and SVJD model parameters are shown in Table 1 
where the green color indicates higher accuracy while the red color indicates lower accuracy.  

Overall, the 1D-CNN based es�mates achieved the highest accuracy for most of the SVJD model 
parameters except for 𝑣𝑣𝐿𝐿𝐿𝐿 for which they were (slightly) outperformed by the MLP method. 1D-CNN, 
on the other hand, significantly outperformed MLP for 𝛽𝛽, 𝛾𝛾 and 𝜆𝜆. The results are robust with respect 
to the chosen MLP or 1D-CNN network architecture. On average the MLP networks with more hidden 
layers slightly outperformed the ones with less hidden layers. For the 1D-CNN the simplest 
specifica�on with 3 convolu�onal layers with 20 filters and 3 fully connected layers with 20 neurons 
achieved the best results for most of the parameters except for 𝛽𝛽 and 𝛾𝛾, for which the more complex 
1D-CNN with 4 convolu�onal layers and 3 fully connected layers worked slightly beter. 

MLP and 1D-CNN methods significantly outperformed the MCMC for all SVJD model parameters. The surprisingly low values 
of the R-Squared for MCMC seem to be caused mostly by miss-converging chains. This holds in particular for the log-variance 
AR(1) parameter 𝛽𝛽 for which the MCMC achieved highly negative R-Squared as for some of the simulated time series the 
MCMC chain converged to a value significantly below the lower bound of the distribution 𝛽𝛽 ~ 𝑈𝑈(0.79,0.99) from which the 
simulations of 𝛽𝛽 were drawn. We illustrate this issue on  
Figure 1 and Figure 2 which compare the actual (observed) values of the parameter 𝛽𝛽 for the 500 
simula�on runs with the predicted values (es�mates) of the MCMC and CNN[3x20,2x20] methods 
respec�vely. 
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Table 1 – SVJD model – Simula�on test results (out-sample R2) 
The table shows out-sample R-Squared of parameter es�mates 𝜽𝜽 = �𝜇𝜇, 𝜇𝜇𝐽𝐽,𝜎𝜎𝐽𝐽, 𝑣𝑣𝐿𝐿𝐿𝐿 ,𝛽𝛽, 𝛾𝛾, 𝜆𝜆� computed with the 
three alterna�ve model es�ma�on methods (MLP, CNN and MCMC) on a simulated dataset of 𝑁𝑁𝑂𝑂𝑂𝑂𝑡𝑡 = 500 
parameter combina�ons and return �me-series of length 𝑇𝑇 = 2000. For MLP the values in [] brackets denote 
the number of neurons in each layer, while for CNN they denote the number of convolu�onal layers x filters 
followed by the number of fully connected layers x neurons. 

 

 
Figure 1 – SVJD model – Out-sample es�mates of beta produced by the MCMC method 
The figure shows out-sample mean posterior es�mates of parameter 𝛽𝛽 computed with the MCMC method. It is 
apparent that while the range of simulated values corresponds to 𝛽𝛽 ~ 𝑈𝑈(0.79,0.99), MCMC o�en miss-
converged, resul�ng in es�mates that are significantly below the minimum value of 0.79. 

 

Model mju mjuJ sigmaJ varLT beta gamma lambda
MLP[20] 0.4691 0.8269 0.8540 0.9462 0.5425 0.6948 0.6515
MLP[30] 0.4750 0.8367 0.8522 0.9467 0.5473 0.7042 0.6610
MLP[20,20] 0.4764 0.8302 0.8712 0.9480 0.5442 0.7150 0.6700
MLP[30,30] 0.4846 0.8344 0.8659 0.9470 0.5562 0.7149 0.6630
MLP[20,20,20] 0.4902 0.8406 0.8715 0.9419 0.5527 0.7257 0.6756
MLP[30,30,30] 0.4814 0.8327 0.8684 0.9463 0.5584 0.7199 0.6702
MLP[20,20,20,20] 0.4959 0.8427 0.8806 0.9473 0.5575 0.7297 0.6729
MLP[30,30,30,30] 0.4891 0.8413 0.8760 0.9489 0.5494 0.7358 0.6792
CNN[3x20,2x20] 0.5378 0.8674 0.8839 0.9426 0.6600 0.8588 0.7216
CNN[3x30,2x30] 0.4858 0.8669 0.8775 0.9412 0.6717 0.8469 0.7186
CNN[4x20,3x20] 0.5123 0.8551 0.8839 0.9432 0.6877 0.8675 0.7129
CNN[4x30,3x30] 0.5075 0.8562 0.8756 0.9403 0.6789 0.8659 0.7138
MCMC -0.0269 -0.9123 0.4593 0.8224 -12.4789 0.6950 0.4886
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Figure 2 – SVJD model – Out-sample es�mates of beta produced by the 1D-CNN 
The figure shows out-sample es�mates of parameter 𝛽𝛽 computed with the CNN[3x20,2x20]. Unlike the MCMC 
method there are no apparent miss-convergence for any of the simula�ons with all of the es�mates staying in 
the range of 𝛽𝛽 ~ 𝑈𝑈(0.79,0.99) from which the simulated parameters were drawn. 

 

To isolate the miss-convergence cases, we construct a proxy for miss-convergence by compu�ng the 
number of parameter es�mates that are more than two standard devia�ons away from their true 
value for each of the three methods (MLP, CNN and MCMC). The numbers of miss-convergence cases 
for each parameter and es�ma�on method are shown in Table 2. We can see that while the MCMC 
miss-converged on 125 (e.g. 25%) of the simulated �me series for parameter 𝛽𝛽, the MLP and 1D-CNN 
methods suffer from almost no miss-convergence cases.  

Table 2 – SVJD model – Simula�on test results – Number of miss-convergence cases 
The table shows the number of simula�ons in which each of the three es�ma�on methods (MLP, CNN and 
MCMC) es�mated a given parameter from 𝜽𝜽 = �𝜇𝜇, 𝜇𝜇𝐽𝐽,𝜎𝜎𝐽𝐽, 𝑣𝑣𝐿𝐿𝐿𝐿 ,𝛽𝛽, 𝛾𝛾, 𝜆𝜆� more than two sample standard 
devia�ons away from the actual simulated parameter value. The simula�on test is based on 𝑁𝑁𝑂𝑂𝑂𝑂𝑡𝑡 = 500 
simulated parameter combina�ons and return �me-series of length 𝑇𝑇 = 2000. 

 

Model mju mjuJ sigmaJ varLT beta gamma lambda
MLP[20] 1 0 0 0 1 1 0
MLP[30] 1 0 0 0 1 1 1
MLP[20,20] 1 1 0 0 1 1 2
MLP[30,30] 2 1 0 0 1 1 1
MLP[20,20,20] 2 0 0 0 1 1 2
MLP[30,30,30] 2 0 0 0 1 1 1
MLP[20,20,20,20] 2 0 0 0 1 1 2
MLP[30,30,30,30] 2 1 0 0 1 1 2
CNN[3x20,2x20] 2 0 0 0 0 0 0
CNN[3x30,2x30] 3 0 0 0 2 0 0
CNN[4x20,3x20] 2 0 0 0 0 0 0
CNN[4x30,3x30] 2 0 0 0 1 0 1
MCMC 24 14 16 2 125 1 8
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To verify the performance of the tested SVJD model es�ma�on methods (MLP, CNN and MCMC) more 
fairly, we recalculate the R-Squared only on the simula�ons for which convergence was achieved by 
all es�ma�on methods for all model parameters. In total for 167 simula�ons at least one method 
miss-converged (based on the two standard devia�on criterion discussed) for at least one of the SVJD 
model parameters, leaving us with a sample of 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 333 simula�ons for which all methods 
converged rela�vely close to the actual parameter values. The values of the R-Squared on these 
𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 333 simula�ons are shown in Table 3. 

Table 3 – SVJD model – Simula�on test results (out-sample R2) – Corrected for miss-convergence 
The table shows out-sample R-Squared of parameter es�mates 𝜽𝜽 = �𝜇𝜇, 𝜇𝜇𝐽𝐽,𝜎𝜎𝐽𝐽, 𝑣𝑣𝐿𝐿𝐿𝐿 ,𝛽𝛽, 𝛾𝛾, 𝜆𝜆�, computed with the 
three alterna�ve model es�ma�on methods (MLP, CNN and MCMC) on a simulated dataset of 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 333 
parameter combina�ons and return �me-series of length 𝑇𝑇 = 2000 for which the es�mates of all of the tested 
models/parameters do not deviate from the true parameters by more than 2 sample standard devia�ons. 

 

We can see that while the MCMC achieves posi�ve R-Squared values once the miss-convergence 
cases are removed, it is s�ll ge�ng outperformed by the MLP and the 1D-CNN methods (especially 
for 𝛽𝛽), with the 1D-CNN achieving the best results for most of the SVJD model parameters (except for 
𝑣𝑣𝐿𝐿𝐿𝐿). 

The results indicate that the 1D-CNN method is able to successfully es�mate all of the SVJD model 
parameters 𝜽𝜽 by working with the return vector 𝒓𝒓 alone, avoiding the need to design a model-specific 
es�ma�on algorithm as in the case of the MCMC, or the need of a fine-tuned set of model-specific 
generalized moments 𝑴𝑴 as in the case for the MLP approach. 

Among the limita�ons of the performed study is the rela�vely simple design of the benchmark 
MCMC algorithm which is mostly based on the algorithms from Jacquier (1994) and Kim, Shephard 
and Chib (1998) and may not be en�rely op�mal. Another limita�on may be in the use of MCMC 
mean posterior es�mates as a benchmark, which may deviate from the Maximum Likelihood 
Es�mates for asymmetric posterior distribu�ons. Finally, a ques�on remains of whether the proposed 
1D-CNN model is indeed fully generic and applicable to any type of SV model including ones with 
non-Gaussian distribu�ons of innova�ons and asymmetry (as well as possibly other effects). To 
par�ally alleviate these issues and verify the robustness of the 1D-CNN approach we compare its 
performance with two highly op�mized SV model es�ma�on methods, based alterna�vely on MCMC 
and MLE, implemented in the popular R packages stochvol and stochvolTMB. Furthermore, we extend 
the comparison to all SV model variants that are implemented in these packages. The tes�ng is 
performed in sec�ons 3.3 and 3.4 respec�vely.  

Model mju mjuJ sigmaJ varLT beta gamma lambda
MLP[20] 0.5183 0.8359 0.8462 0.9309 0.5886 0.6243 0.6847
MLP[30] 0.5195 0.8436 0.8472 0.9306 0.5853 0.6335 0.6975
MLP[20,20] 0.5237 0.8445 0.8636 0.9322 0.5915 0.6472 0.7030
MLP[30,30] 0.5366 0.8440 0.8561 0.9302 0.5950 0.6477 0.6958
MLP[20,20,20] 0.5405 0.8476 0.8647 0.9309 0.5917 0.6555 0.7072
MLP[30,30,30] 0.5341 0.8471 0.8662 0.9304 0.5972 0.6471 0.7021
MLP[20,20,20,20] 0.5449 0.8486 0.8719 0.9318 0.5966 0.6592 0.6966
MLP[30,30,30,30] 0.5359 0.8533 0.8674 0.9325 0.5927 0.6683 0.7087
CNN[3x20,2x20] 0.5979 0.8677 0.8797 0.9222 0.7439 0.8302 0.7525
CNN[3x30,2x30] 0.5335 0.8687 0.8705 0.9281 0.7559 0.8083 0.7505
CNN[4x20,3x20] 0.5519 0.8531 0.8827 0.9272 0.7657 0.8316 0.7494
CNN[4x30,3x30] 0.5496 0.8585 0.8733 0.9215 0.7544 0.8359 0.7539
MCMC 0.2619 0.7732 0.7535 0.9139 0.5533 0.7965 0.6540
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3.3. SV model es�ma�on – stochvol package 
The goal of this sec�on is to verify the robustness of our DNN based SVJD model es�ma�on approach 
by applying it to the various SV model specifica�ons implemented in the R package stochvol 
(Hosszejni and Kastner 2023) which allows for efficient SV model es�ma�on with modern MCMC 
algorithms based on the studies of Kastner (2016) and Hosszejni and Kastner (2021). 

Package stochvol allows for the simula�on and es�ma�on of four SV model specifica�ons: 

• Log-SV model with Gaussian errors (SV) 
• Asymmetric log-SV model with Gaussian errors (ASV) 
• Log-SV model with t-distributed errors (SV-t) 
• Asymmetric log-SV model with t-distributed errors (ASV-t). 

The package uses the following SV model nota�on: 

• Return equa�on:   𝑟𝑟𝑡𝑡 = 𝐵𝐵ℎ𝑡𝑡/2𝜀𝜀𝑟𝑟,𝑡𝑡 
• Log-variance equa�on:  ℎ𝑡𝑡 = 𝜇𝜇 + 𝜙𝜙(ℎ𝑡𝑡−1 − 𝜇𝜇) + 𝜎𝜎𝜀𝜀ℎ,𝑡𝑡 

Where 𝑟𝑟𝑡𝑡 denotes the logarithmic return in period 𝑡𝑡 and ℎ𝑡𝑡 the logarithmic variance, while 𝜀𝜀𝑟𝑟,𝑡𝑡 and 
𝜀𝜀ℎ,𝑡𝑡 are their error terms whose distribu�on defines the four possible model specifica�ons: 

• SV model  Error terms 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑁𝑁(0,1) and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) are uncorrelated. 
• ASV model  Error terms 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑁𝑁(0,1) and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) are correlated with correla�on 𝜌𝜌. 
• SV-t model  Error terms 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑇𝑇(0,1, 𝜈𝜈) and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) are uncorrelated. 
• ASV-t model  Error terms 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑇𝑇(0,1, 𝜈𝜈) and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) are correlated with correla�on 𝜌𝜌. 

As the asymmetric SV models require a different set of generalized moments than the SVJD model in 
sec�on 3.1. for the MLP method to provide compe��ve results (Witzany and Fičura, 2023b), we 
perform the comparison only between the newly proposed DNN approach and the MCMC method 
implemented in the stochvol package. Addi�onally, for the sake of sparsity we show the results only 
for the simplest 1D-CNN architecture from sec�on 3.2. denoted as CNN[3x20,2x20], represen�ng a 
1D-CNN with 3 convolu�onal layers with 20 filters each and 2 fully connected layers with 20 neurons 
each. The results for other 1D-CNN architectures from sec�on 3.2. are qualita�vely similar. 

Apart from that, the design of the test is the same as in the previous sec�on. To train the 1D-CNN, we 
draw a random dataset of 𝑁𝑁 = 50000 parameter combina�ons 𝜽𝜽(𝑖𝑖) and for each of them draw a 
vector of simulated returns 𝒓𝒓(𝑖𝑖) of length 𝑇𝑇 = 2000. Similar dataset of size 𝑁𝑁𝑂𝑂𝑂𝑂𝑡𝑡 = 500 is drawn to 
get the tes�ng sample on which the accuracy of the 1D-CNN and the MCMC method is compared. 
The MCMC is run with 20 000 itera�ons with 10 000 itera�on burn-out period and default se�ngs. 

Finally, the stochvol model parameters are drawn from the following distribu�ons: 

• 𝜇𝜇 ~ 𝑈𝑈(−12,−7)  (long-term log-variance)   (mju) 
• 𝜙𝜙 ~ 𝑈𝑈(0.90,0.995)  (log-variance AR(1) parameter)   (phi) 
• 𝜎𝜎 ~ 𝑈𝑈(0.05,0.50)  (vola�lity of the log-variance)   (sigma) 
• 𝜌𝜌 ~ 𝑈𝑈(−0.9,0.9)  (correla�on between log-variance and returns) (rho) 
• 𝜈𝜈 ~ 𝑈𝑈(3,10)   (degrees of freedom of the t-distribu�on) (nu) 

The results of the simula�on test are shown in Table 4. The out-sample R-Squared values for all 
parameters and models are shown in Panel A, the miss-convergence rates based on the two standard 
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devia�on criterion are shown in Panel B, and the corrected R-Squared values on a subset of 
simula�ons for which both methods converged are shown in Panel C.  

Table 4 – stochvol models – Simula�on test results (out-sample R2) 
The table summarizes the performance of our 1D-CNN es�ma�on approach in comparison with the MCMC 
algorithms implemented in the R package stochvol for four SV model variants: SV, ASV, SV-t and ASV-t. Panel A 
shows the out-sample R-Squared of parameter es�mates 𝜽𝜽 = {𝜇𝜇,𝜙𝜙,𝜎𝜎,𝜌𝜌, 𝜈𝜈} computed alterna�vely with the 
CNN[3x20,2x20] method or with MCMC method on a simulated dataset of 𝑁𝑁𝑂𝑂𝑂𝑂𝑡𝑡 = 500 parameter 
combina�ons and return �me-series of length 𝑇𝑇 = 2000. Panel B shows the number of simula�ons for which 
each of the two methods miss-converged in sense that the model es�mate of a given parameter is more than 
two sample standard devia�ons aways from the actual value. Panel C shows the corrected R-Squared for each 
model specifica�on once the simula�ons on which any of the two es�ma�on methods miss-converged (for any 
of the parameters) are removed from the dataset. This results in 𝑁𝑁𝑆𝑆𝑆𝑆 = 432, 𝑁𝑁𝐴𝐴𝑆𝑆𝑆𝑆 = 445, 𝑁𝑁𝑆𝑆𝑆𝑆−𝑡𝑡 = 349 and 
𝑁𝑁𝐴𝐴𝑆𝑆𝑆𝑆−𝑡𝑡 = 278 observa�ons for the SV, ASV, SV-t and ASV-t models respec�vely. 

 

We can see from Panel A that the 1D-CNN outperforms the MCMC algorithms from the package 
stochvol for all tested models and parameters. Panel B further shows that while the MCMC miss-
converged for up to 25% of the simulated �me-series, 1D-CNN miss-converged in only one simula�on 

Model Method mu phi sigma rho nu
CNN[3x20,2x20] 0.9708 0.7810 0.9447
MCMC 0.9658 -14.8476 0.8936
CNN[3x20,2x20] 0.9773 0.7855 0.9502 0.9556
MCMC 0.4313 -12.4391 0.8334 0.9301
CNN[3x20,2x20] 0.9713 0.7289 0.9200 0.7366
MCMC 0.9708 -31.9323 0.4499 -2.0128
CNN[3x20,2x20] 0.9670 0.7448 0.9166 0.9347 0.7587
MCMC 0.8690 -53.5093 -0.8546 0.6482 -4.3263

Model Method mu phi sigma rho nu
CNN[3x20,2x20] 0 0 0
MCMC 1 67 0
CNN[3x20,2x20] 0 1 0 0
MCMC 10 45 2 0
CNN[3x20,2x20] 0 0 0 0
MCMC 0 96 12 91
CNN[3x20,2x20] 0 0 0 0 0
MCMC 4 131 49 0 154

Model Method mu phi sigma rho nu
CNN[3x20,2x20] 0.9671 0.8049 0.9315
MCMC 0.9711 0.6360 0.9282
CNN[3x20,2x20] 0.9788 0.8167 0.9425 0.9638
MCMC 0.9324 0.6278 0.9196 0.9601
CNN[3x20,2x20] 0.9691 0.7370 0.8902 0.7328
MCMC 0.9695 0.5929 0.8678 0.4914
CNN[3x20,2x20] 0.9589 0.8154 0.8903 0.9470 0.7366
MCMC 0.9248 0.3270 0.6317 0.6619 0.2125

Panel A: Out-sample R-squared on 500 simulated parameter combinations

Panel C: Out-sample R-squared on parameter combinations where both methods converged

SV

ASV

SV-t

ASV-t

Panel B: Miss-convergence rates on 500 simulated parameter combinations

SV-t

ASV-t

SV

ASV

SV-t

ASV-t

SV

ASV
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(for the ASV model parameter 𝜙𝜙). Finally, Panel C shows that the superior performance of the 1D-
CNN persists even once the miss-converging cases are removed from the sample (especially for 𝜙𝜙 and 
𝜈𝜈). 

3.4. SV model es�ma�on – stochvolTMB package 
While the DNN approach achieved superior performance against MCMC in the SVJD/SV model 
es�ma�on tests in sec�ons 3.2. and 3.3., this may poten�ally be explained by the tendency of MCMC 
chains to some�mes miss-converge. Addi�onally, the conversion of MCMC samples into mean 
posterior es�mates may result in a devia�on from the Maximum Likelihood Es�mates (MLE) if the 
posterior distribu�ons of the model parameters are asymmetric.  

To further verify the robustness of the DNN approach we compare its performance against the 
approximate Maximum Likelihood (MLE) approach based on Laplace approxima�on and automa�c 
differen�a�on (Skaug and Yu, 2014) implemented in the R packages stochvolTMB (Wahl, et al., 2021).  

Package stochvoTMB allows for the simula�on and es�ma�on of four SV model specifica�ons: 

• Log-SV model with Gaussian errors (SV) 
• Asymmetric log-SV model with Gaussian errors (ASV) 
• Log-SV model with skew-Gaussian errors (SV-sg) 
• Log-SV model with t-distributed errors (SV-t). 

Compared to the stochvol, the package stochvolTMB thus allows also for the SV-sg model with skew-
Gaussian error distribu�on but does not allow for an asymmetric version of the SV-t model. 

The package uses the following SV model nota�on: 

• Return equa�on:   𝑟𝑟𝑡𝑡 = 𝜎𝜎𝑟𝑟𝐵𝐵ℎ𝑡𝑡/2𝜀𝜀𝑟𝑟,𝑡𝑡 
• Log-variance equa�on:  ℎ𝑡𝑡 = 𝜙𝜙ℎ𝑡𝑡−1 + 𝜎𝜎ℎ𝜀𝜀ℎ,𝑡𝑡 

Where 𝑟𝑟𝑡𝑡 denotes the logarithmic return in period 𝑡𝑡 and ℎ𝑡𝑡 the logarithmic variance, while 𝜀𝜀𝑟𝑟,𝑡𝑡 and 
𝜀𝜀ℎ,𝑡𝑡 are their error terms whose distribu�on defines the four possible model specifica�ons: 

• SV model  Error terms 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑁𝑁(0,1) and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) are uncorrelated. 
• ASV model  Error terms 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑁𝑁(0,1) and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) are correlated with correla�on 𝜌𝜌. 
• SV-sg model  Error terms 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑆𝑆𝑆𝑆(0,1,𝛼𝛼)  and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) are uncorrelated. 
• SV-t model  Error terms 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑇𝑇(0,1, 𝜈𝜈) and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) are uncorrelated. 

The design of the test is the same as in the previous sec�on. As a representa�ve of the DNN approach 
we again use the CNN[3x20,2x20] specifica�on. Se�ngs of the MLE are kept at their default values. 

The parameter combina�ons are drawn from the following distribu�ons: 

• 𝜎𝜎𝑟𝑟 ~ 𝑈𝑈(0.005,0.045)  (long-term vola�lity of returns)   (sigma_y) 
• 𝜙𝜙 ~ 𝑈𝑈(0.90,0.995)  (log-variance AR(1) parameter)   (phi) 
• 𝜎𝜎ℎ ~ 𝑈𝑈(0.05,0.50)  (vola�lity of the log-variance)   (sigma_h) 
• 𝜌𝜌 ~ 𝑈𝑈(−0.9,0.9)  (correla�on between log-variance and returns) (rho) 
• 𝛼𝛼 ~ 𝑈𝑈(−5,5)   (skew par. of the skew-Gaussian distribu�on) (alpha) 
• 𝜈𝜈 ~ 𝑈𝑈(3,10)   (degrees of freedom of the t-distribu�on) (nu) 

The results of the simula�on test are shown in Table 5. The out-sample R-Squared values for all 
parameters and models are shown in Panel A, the miss-convergence rates based on the two standard 
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devia�on criterion are shown in Panel B, and the corrected R-Squared values on a subset of 
simula�ons for which both methods converged are shown in Panel C. 

 

Table 5 – stochvolTMB models – Simula�on test results (out-sample R2) 
The table summarizes the performance of our 1D-CNN es�ma�on approach in comparison with the MLE 
method implemented in the R package stochvolTMB for four SV model variants: SV, ASV, SV-sg and SV-t. Panel A 
shows the out-sample R-Squared of parameter es�mates 𝜽𝜽 = {𝜎𝜎𝑟𝑟 ,𝜙𝜙,𝜎𝜎ℎ ,𝜌𝜌,𝛼𝛼, 𝜈𝜈} computed alterna�vely with 
the CNN[3x20,2x20] method or with MLE method on a simulated dataset of 𝑁𝑁𝑂𝑂𝑂𝑂𝑡𝑡 = 500 parameter 
combina�ons and return �me-series of length 𝑇𝑇 = 2000. Panel B shows the number of simula�ons for which 
each of the two methods miss-converged in sense that the model es�mate of a given parameter is more than 
two sample standard devia�ons aways from the actual value. Panel C shows the corrected R-Squared for each 
model specifica�on once the simula�ons on which any of the two es�ma�on methods miss-converged (for any 
of the parameters) are removed from the dataset. This results in 𝑁𝑁𝑆𝑆𝑆𝑆 = 462, 𝑁𝑁𝐴𝐴𝑆𝑆𝑆𝑆 = 472, 𝑁𝑁𝑆𝑆𝑆𝑆−𝑠𝑠𝑠𝑠 = 464 and 
𝑁𝑁𝑆𝑆𝑆𝑆−𝑡𝑡 = 439 observa�ons for the SV, ASV, SV-sg and SV-t models respec�vely. 

 

We can see from Panel A that the 1D-CNN outperforms the MLE algorithms from the package 
stochvolTMB for all tested models and parameters, although the results are rela�vely close, except 
for 𝜙𝜙 and 𝜈𝜈. Panel B shows that the miss-convergence rates for MLE are far lower than for the MCMC 
from sec�on 3.3., but s�ll much higher than for the 1D-CNN which miss-converged in only one 
simula�on for the SV-t model parameter 𝜙𝜙. The MLE, on the other hand, miss-converged for 24-37 

Model Model sigma_r phi sigma_h rho alpha nu
CNN[3x20,2x20] 0.9353 0.7648 0.9234
MLE 0.9067 -5.3048 0.8995
CNN[3x20,2x20] 0.9379 0.7891 0.9505 0.9634
MLE 0.9178 0.1854 0.9354 0.8306
CNN[3x20,2x20] 0.9370 0.7511 0.9274 0.9689
MLE 0.8974 -29.0248 0.7841 0.7815
CNN[3x20,2x20] 0.9386 0.7080 0.9160 0.5175
MLE 0.8520 -3.5683 0.7643 -8.44E+09

Model Model sigma_r phi sigma_h rho alpha nu
CNN[3x20,2x20] 0 0 0
MLE 1 37 1
CNN[3x20,2x20] 0 0 0 0
MLE 2 24 0 9
CNN[3x20,2x20] 0 0 0 0
MLE 3 33 8 1
CNN[3x20,2x20] 0 1 0 0
MLE 3 34 2 27

Model Model sigma_r phi sigma_h rho alpha nu
CNN[3x20,2x20] 0.9312 0.7763 0.9149
MLE 0.9086 0.6587 0.9366
CNN[3x20,2x20] 0.9340 0.8050 0.9460 0.9685
MLE 0.9365 0.7406 0.9505 0.9684
CNN[3x20,2x20] 0.9421 0.7666 0.9231 0.9691
MLE 0.9366 0.6626 0.9422 0.8182
CNN[3x20,2x20] 0.9361 0.7254 0.9084 0.4861
MLE 0.9011 0.6069 0.9007 0.6012

Panel A: Out-sample R-squared on 500 simulated parameter combinations

Panel B: Miss-convergence rates on 500 simulated parameter combinations

Panel C: Out-sample R-squared on parameter combinations where both methods converged

SV-sg

SV-t

SV

ASV

SV-sg

SV-t

SV

ASV

SV-sg

SV-t

SV

ASV
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simula�ons (depending on model specifica�on) for parameter 𝜙𝜙 and for 27 simula�ons for the SV-t 
parameter 𝜈𝜈. Finally, Panel C shows that once all miss-converging cases are removed, the gap 
between 1D-CNN and MLE performance further narrows, but with 1D-CNN s�ll leading in most of the 
tests. This is especially apparent for the parameter 𝜙𝜙. MLE, on the other hand, achieved slightly 
higher accuracy for parameter 𝜎𝜎𝑟𝑟 in the ASV model, parameter 𝜎𝜎ℎ in the SV and SV-g models, and 
parameter 𝜈𝜈 for the SV-t model. The difference for 𝜈𝜈 is the most pronounced. We have examined this 
issue and it seems that the results for 𝜈𝜈 are rela�vely vola�le with the CNN[3x20,2x20] performance 
being an outlier. Our empirical tests with other CNN specifica�ons show that the CNN outperform 
MLE for 𝜈𝜈 on average.  

4. Conclusion 
In the study we have shown how deep neural networks (DNN) can be used as a generic method for an 
accurate and robust es�ma�on of Stochas�c-Vola�lity Jump-Diffusion (SVJD) models on historical 
data. 1-Dimensional Convolu�onal Neural Networks (1D-CNN) were used to accomplish this task. The 
accuracy and robustness of the proposed method was verified on a range of simula�on tests that 
compared the 1D-CNN performance with a similar method based on the Mul�layer Perceptron (MLP) 
neural networks and fine-tuned set of generalized moments, as well as with standard sta�s�cal 
approaches based on MCMC and MLE, including their efficient implementa�ons from the R packages 
stochvol and stochvolTMB. The analysis included our workhorse SVJD model as well as other SV 
model variants including ones with asymmetry and non-Gaussian errors. In all of the tests 1D-CNN 
achieved the highest performance for almost all of the model parameters, while suffering from 
significantly lower miss-convergence rates than the MCMC and MLE approaches. 

Among the main benefits of the DNN approach is that it is fully generic, allowing for the es�ma�on of 
any type of SV/SVJD model as long as simula�ons from the model can be drawn. This is in stark 
contrast with MCMC which typically requires major modifica�ons and fine-tuning for each SV/SVJD 
model for which it is applied. It also sets the DNN approach apart from the MLP based methods as 
while the DNN can be applied directly to the asset return �me series, MLP requires the conversion of 
the return �me series into a set of generalized moments (features) which are model-specific and may 
need to be fine-tuned for each SV/SVJD model variant. 

Compared with MLE/MCMC the DNN may also have a speed advantage in situa�ons where the same 
SV/SVJD model needs to be re-es�mated mul�ple �mes (e.g. on different �me periods or �me series), 
as the re-es�ma�on of the SV/SVJD in such a case is nearly instantaneous. 

Among the main weaknesses of the proposed DNN approach is that it produces only point es�mates 
of the model parameters without addi�onal diagnos�cs or confidence intervals. MCMC, on the other 
hand, provides their full posterior distribu�ons of the parameters. In situa�ons where addi�onal 
diagnos�cs or the full posteriors are needed the DNN thus cannot replace the MCMC. 

Finally, while the proposed DNN approach based on 1D-CNN solves the SV/SVJD model es�ma�on 
problem, it s�ll does not solve the problem of latent states filtering, which is needed to apply the 
model on out-sample datasets and generate forecasts. The DNN based model es�ma�on procedure 
would therefore need to be supplemented with a par�cle filter in order to solve the filtering problem 
based on the es�mated values of the model parameters. As such filters can usually be rela�vely 
quickly designed, the DNN s�ll provide a highly generic solu�on to the SV/SVJD model inference 
problem. Alterna�vely, other type of DNN model (such as the LSTM networks) may be used to solve 
the filtering problem as well, which can be an interes�ng area of future research. 
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Appendix A – MCMC es�ma�on of the SVJD model 
MCMC is used as a benchmark method to es�mate the model described in equa�ons (1) and (2).  

Our MCMC algorithm proceeds as follows: 

0. Ini�al values of the model parameters were set to: 𝜇𝜇(0) = 0, 𝛼𝛼(0) = ln[var(𝒓𝒓)] ∗ (1 − 0.9), 
𝛽𝛽(0) = 0.9, 𝛾𝛾(0) = 0.3, 𝜇𝜇𝐽𝐽

(0) = 0, 𝜎𝜎𝐽𝐽
(0) = 2 ∗ var(𝒓𝒓), 𝜆𝜆(0) = 0.05. The ini�al values of the 

stochas�c variances 𝑽𝑽(0) were set equal to the exponen�al moving average of 𝒓𝒓2 with decay 
of 0.99, and the ini�al jump sizes 𝑱𝑱(0) and jump occurrences 𝒁𝒁(0) were set to zero. 

1. For 𝑖𝑖 = 1, … ,𝑇𝑇 sample jump sizes with 𝐽𝐽𝑖𝑖
(𝑠𝑠) ∝ 𝜑𝜑 �𝐽𝐽; 𝜇𝜇𝐽𝐽

(𝑠𝑠−1),𝜎𝜎𝐽𝐽
(𝑠𝑠−1)� if 𝑍𝑍𝑖𝑖

(𝑠𝑠−1) = 0 or with 

𝐽𝐽𝑖𝑖
(𝑠𝑠) ∝ 𝜑𝜑 �𝑟𝑟𝑖𝑖;𝜇𝜇(𝑠𝑠−1) + 𝐽𝐽,�𝑉𝑉𝑖𝑖

(𝑠𝑠−1)�𝜑𝜑 �𝐽𝐽; 𝜇𝜇𝐽𝐽
(𝑠𝑠−1),𝜎𝜎𝐽𝐽

(𝑠𝑠−1)� if 𝑍𝑍𝑖𝑖
(𝑠𝑠−1) = 1. 

2. For 𝑖𝑖 = 1, … ,𝑇𝑇 sample 𝑍𝑍𝑖𝑖
(𝑠𝑠) ∈ {0,1}, with Pr[𝑍𝑍 = 1] = 𝑝𝑝1/(𝑝𝑝0 + 𝑝𝑝1), where: 

𝑝𝑝0 = 𝜑𝜑�𝑟𝑟𝑖𝑖;𝜇𝜇(𝑠𝑠−1),�𝑉𝑉𝑖𝑖
(𝑠𝑠−1)� �1 − 𝜆𝜆(𝑠𝑠−1)� and 𝑝𝑝1 = 𝜑𝜑�𝑟𝑟𝑖𝑖;𝜇𝜇(𝑠𝑠−1) + 𝐽𝐽,�𝑉𝑉𝑖𝑖

(𝑠𝑠−1)�𝜆𝜆(𝑠𝑠−1). 

3. Sample new stochas�c log-variances ℎ𝑖𝑖
(𝑠𝑠) = log �𝑉𝑉𝑖𝑖

(𝑠𝑠)� for 𝑖𝑖 = 1, … ,𝑇𝑇 with the accept-reject 

Gibbs sampler (Kim, Shephard and Chib, 1998), by calcula�ng 𝑦𝑦𝑖𝑖 = 𝑟𝑟𝑖𝑖 − 𝜇𝜇(𝑠𝑠−1) − 𝐽𝐽𝑖𝑖
(𝑠𝑠)𝑍𝑍𝑖𝑖

(𝑠𝑠) 

and sampling proposal ℎ𝑖𝑖
(𝑠𝑠) from 𝜑𝜑(ℎ𝑖𝑖;𝜇𝜇𝑖𝑖 ,𝜎𝜎), where: 𝜇𝜇𝑖𝑖 = 𝜙𝜙𝑖𝑖 + 𝜎𝜎2

2
�𝑦𝑦𝑖𝑖2 exp(−𝜙𝜙𝑖𝑖) − 1�,  

𝜙𝜙𝑖𝑖 = [𝛼𝛼(1−𝛽𝛽)+𝛽𝛽(log𝑆𝑆𝑖𝑖+1+log𝑆𝑆𝑖𝑖−1)]
(1+𝛽𝛽2)  and 𝜎𝜎 = 𝛾𝛾

�1+𝛽𝛽2
. Proposal ℎ𝑖𝑖

(𝑠𝑠) is accepted with probability 

𝑓𝑓∗ 𝑔𝑔∗⁄  , where ln𝑓𝑓∗ = −ℎ𝑖𝑖
2
− 𝑦𝑦𝑖𝑖2

2
[exp (−ℎ𝑖𝑖)] and ln𝑔𝑔∗ = −ℎ𝑖𝑖

2
− 𝑦𝑦𝑖𝑖2

2
[exp(−𝜙𝜙𝑖𝑖) (1 + 𝜙𝜙𝑖𝑖) −

ℎ𝑖𝑖 exp(−𝜙𝜙𝑖𝑖)]. If not accepted, a new proposal is drawn (un�l acceptance). 
4. Sample new stochas�c vola�lity autoregression coefficients 𝛼𝛼(𝑠𝑠),𝛽𝛽(𝑠𝑠),𝛾𝛾(𝑠𝑠) from ℎ𝑖𝑖 =

log �𝑉𝑉𝑖𝑖
(𝑠𝑠)� for 𝑖𝑖 = 1, … ,𝑇𝑇 using the Bayesian linear regression model: 

𝜷𝜷� = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿𝑿𝑿, and 𝒆𝒆� = 𝑿𝑿 − 𝑿𝑿𝜷𝜷�, where 𝑿𝑿 = � 1 …  1 
ℎ1 …ℎ𝐿𝐿−1

�
′
 and 𝑿𝑿 = (ℎ2 …ℎ𝐿𝐿)′.  

Sampling �𝛾𝛾(𝑠𝑠)�2 ∝ 𝐼𝐼𝑆𝑆 �𝑛𝑛−2
2

, 𝒆𝒆�
′𝒆𝒆�
2
� and �𝛼𝛼(𝑠𝑠),𝛽𝛽(𝑠𝑠)�′ ∝ 𝜑𝜑 �(𝛼𝛼,𝛽𝛽)′;𝜷𝜷�, �𝛾𝛾(𝑠𝑠)�2(𝑿𝑿′𝑿𝑿)−1�. 

5. Sample 𝜇𝜇(𝑠𝑠) based on the normally distributed �me series 𝑟𝑟𝑖𝑖 − 𝐽𝐽𝑖𝑖
(𝑠𝑠)𝑍𝑍𝑖𝑖

(𝑠𝑠) with variances 𝑉𝑉𝑖𝑖
(𝑠𝑠): 

𝑝𝑝�𝜇𝜇(𝑠𝑠)|𝒓𝒓, 𝑱𝑱(𝑠𝑠),𝒁𝒁(𝑠𝑠),𝑽𝑽(𝑠𝑠)� ∝ 𝜑𝜑�𝜇𝜇;�
𝑟𝑟𝑖𝑖 − 𝐽𝐽𝑖𝑖

(𝑠𝑠)𝑍𝑍𝑖𝑖
(𝑠𝑠)

𝑉𝑉𝑖𝑖
(𝑠𝑠)

𝐿𝐿

𝑖𝑖=1

�
1

𝑉𝑉𝑖𝑖
(𝑠𝑠)

𝐿𝐿

𝑖𝑖=1

� ,�
1

𝑉𝑉𝑖𝑖
(𝑠𝑠)

𝐿𝐿

𝑖𝑖=1

�. 

6. Sample 𝜆𝜆(𝑠𝑠) from 𝑝𝑝�𝜆𝜆(𝑠𝑠)|𝑱𝑱(𝑠𝑠)� ∝ Beta �𝜆𝜆;𝐵𝐵𝐽𝐽
(𝑠𝑠) + 1,𝑇𝑇 − 𝐵𝐵𝐽𝐽

(𝑠𝑠) + 1� where 𝐵𝐵𝐽𝐽
(𝑠𝑠) denotes the 

number of realized jumps 𝐵𝐵𝐽𝐽
(𝑠𝑠) = ∑ 𝐽𝐽𝑖𝑖

(𝑠𝑠)𝐿𝐿
𝑖𝑖=1 . 

7. Sample 𝜇𝜇𝐽𝐽
(𝑠𝑠),𝜎𝜎𝐽𝐽

(𝑠𝑠) based on the normally distributed series 𝑱𝑱(𝑠𝑠) and uninforma�ve priors 
𝑝𝑝(𝜇𝜇) ∝ 1 and 𝑝𝑝(log𝜎𝜎2) ∝ 1, equivalent to 𝑝𝑝(𝜎𝜎2) ∝ 1/𝜎𝜎2), from: 

𝑝𝑝 �𝜇𝜇𝐽𝐽
(𝑠𝑠)|𝑱𝑱(𝑠𝑠),𝜎𝜎𝐽𝐽

(𝑠𝑠−1)� ∝ 𝜑𝜑�𝜇𝜇𝐽𝐽
(𝑠𝑠);

∑ 𝐽𝐽𝑖𝑖
(𝑠𝑠)𝐿𝐿

𝑖𝑖=1
𝑇𝑇

,
𝜎𝜎𝐽𝐽

(𝑠𝑠−1)

√𝑇𝑇
�, 

𝑝𝑝 ��𝜎𝜎𝐽𝐽
(𝑠𝑠)�

2
|𝑱𝑱(𝑠𝑠),𝜇𝜇𝐽𝐽

(𝑠𝑠)� ∝ 𝐼𝐼𝑆𝑆 ��𝜎𝜎𝐽𝐽
(𝑠𝑠)�

2
;
𝑇𝑇
2

,
∑ �𝐽𝐽𝑖𝑖

(𝑠𝑠) − 𝜇𝜇𝐽𝐽
(𝑠𝑠)�

2𝐿𝐿
𝑖𝑖=1

2 �. 
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Appendix B – Generalized moments used in the MLP approach 
To es�mate the SVJD model described in equa�ons (1) and (2) with the MLP approach from sec�on 
2.2, we had to transform the �me-series of returns 𝒓𝒓 into a vector of generalized moments 𝑴𝑴 on 
which the MLP neural network 𝜽𝜽 = 𝑓𝑓(𝑴𝑴) could be trained. The generalized moments were chosen 
expertly based on proxies of vola�lity, vola�lity persistence and jumps in financial �me series. 

The generalized moments used in the empirical study (sec�on 3.1. and 3.2.) are as follows: 

1. Mean return:     𝑀𝑀 = mean(𝒓𝒓) 
2. Variance of returns:    𝑉𝑉 = var(𝒓𝒓)  
3. Skewness of returns:    𝑆𝑆𝑆𝑆 = skew(𝒓𝒓)  
4. Kurtosis of returns:     𝑆𝑆𝑆𝑆 = kurt(𝒓𝒓)  
5. Realized variance:     𝑅𝑅𝑉𝑉 = mean(𝒓𝒓2) 
6. Absolute varia�on:     𝐴𝐴𝑉𝑉 = mean(|𝒓𝒓|) 
7. Bi-power varia�on:     𝐵𝐵𝑉𝑉 = mean��𝒓𝒓1,…,𝐿𝐿−1� ∗ �𝒓𝒓2,…,𝐿𝐿�� 
8. Ra�o of BV to RV:     𝐵𝐵𝑉𝑉𝑅𝑅𝑉𝑉 = 𝐵𝐵𝑉𝑉/𝑅𝑅𝑉𝑉 
9. Realized Signed Jumps:    𝑅𝑅𝑆𝑆𝐽𝐽 = [sum(𝒓𝒓+2 )− sum(𝒓𝒓−2 )]/sum(𝒓𝒓2) 
10. Mean squared to abs. varia�on:   𝑅𝑅𝑉𝑉𝐴𝐴𝑉𝑉 = �𝑅𝑅𝑉𝑉1/2 − 𝐴𝐴𝑉𝑉�/𝑅𝑅𝑉𝑉1/2 
11. Squared return autocorrela�on (lag 1):  𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠,1 = acf(𝒓𝒓2, 1) 
12. Avg. sq. return autocorrela�on (lag 1-5):  𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠,1,5 = mean[acf(𝒓𝒓2, 1), … , acf(𝒓𝒓2, 5)] 
13. Avg. sq. return autocorrela�on (lag 1-23):  𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠,1,23 = mean[acf(𝒓𝒓2, 1), … , acf(𝒓𝒓2, 23)] 
14. Avg. sq. return autocorrela�on (lag 1-67):  𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠,1,67 = mean[acf(𝒓𝒓2, 1), … , acf(𝒓𝒓2, 67)] 
15. Avg. sq. return autocorrela�on (lag 1-252):  𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠,1,252 = mean[acf(𝒓𝒓2, 1), … , acf(𝒓𝒓2, 23)] 
16. Squared return autocorrela�on (lag 1):  𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑠𝑠,1 = acf(|𝒓𝒓|, 1) 
17. Avg. sq. return autocorrela�on (lag 1-5):  𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑠𝑠,1,5 = mean[acf(|𝒓𝒓|, 1), … , acf(|𝒓𝒓|, 5)] 
18. Avg. sq. return autocorrela�on (lag 1-23):  𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑠𝑠,1,23 = mean[acf(|𝒓𝒓|, 1), … , acf(|𝒓𝒓|, 23)] 
19. Avg. sq. return autocorrela�on (lag 1-67):  𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑠𝑠,1,67 = mean[acf(|𝒓𝒓|, 1), … , acf(|𝒓𝒓|, 67)] 
20. Avg. sq. return autocorrela�on (lag 1-252):  𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑠𝑠,1,252 = mean[acf(|𝒓𝒓|, 1), … , acf(|𝒓𝒓|, 252)] 

Where 𝒓𝒓+2  denotes a vector of all posi�ve returns and 𝒓𝒓−2  a vector of all nega�ve returns. 

Before being used as feature in the MLP neural network, each of the generalized moments was 
normalized with 𝒙𝒙∗ = (𝒙𝒙 −𝑚𝑚𝒙𝒙)/𝑠𝑠𝒙𝒙 where 𝒙𝒙 denotes the raw feature, 𝒙𝒙∗ the normalized feature, and 
the normaliza�on parameters 𝑚𝑚𝒙𝒙 = mean(𝒙𝒙) and 𝑠𝑠𝒙𝒙 = �var(𝒙𝒙) es�mated on the training dataset of 
size 𝑁𝑁 = 50 000. The same opera�ons were applied also to each value of the target vector 𝜽𝜽. 

The normalized moments (features) were used as input into the MLP neural network implemented 
with the Matlab func�on feedforwardnet. Training was performed with the func�on train using the 
Levenberg-Marquardt algorithm with default values of its se�ngs. 
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Appendix C – 1D-CNN architecture 
Four 1D Convolu�onal Neural Network (D-CNN) variants are tested, alterna�vely with 3 or 4 
convolu�onal layers followed by 2 or 3 fully connected layers, each one alterna�vely with 20 or 30 
filters/neurons. In the result tables we denote these networks as CNN[3x20,2x20], CNN[3x30,2x30], 
CNN[4x20,3x20] and CNN[4x30,3x30], with the values in [] brackets deno�ng the number of 
convolu�onal layers x filters followed by the number of fully connected layers x neurons. 

For all tested networks the filter and pooling width are set to 5 and a stride equal to 5 is applied in all 
pooling layers except the first one. Average pooling is used and the Leaky ReLu ac�va�on func�on is 
used in the convolu�onal and fully connected layers. The choice on the pooling width and the stride 
is a result of early tes�ng which showed that pooling with stride improves the learning of the SVJD 
autoregressive parameter, but applica�on of stride in all pooling layers worsens the performance with 
respect to the vola�lity of variance parameter and the jump-process parameters. Combined approach 
where stride is applied to all pooling layers except the first one achieved the most balanced results. 

The CNN[3x20,2x20] network was ini�alized as follows:  

% Set CNN parameters 
numFeatures = 1;            % Number of time series used as input 
numResponses = size(YN,2);  % Number of parameters of the SVJD model 
filterSize = 5;             % Width of the 1D convolutional filters 
poolSize = 5;               % Witdh of the 1D pooling operation 
numFilters = 20;            % Number of 1D convolutional filters 
numNeurons = 20;            % Number of neurons in fully-connected layers 
 
% Construct 3x2 CNN architecture 
layers = [ ... 
    sequenceInputLayer(numFeatures,MinLength=poolSize*filterSize) 
    convolution1dLayer(filterSize,numFilters,Padding="causal") 
    leakyReluLayer 
    layerNormalizationLayer 
    averagePooling1dLayer(poolSize) 
    convolution1dLayer(filterSize,numFilters,Padding="causal") 
    leakyReluLayer 
    layerNormalizationLayer 
    averagePooling1dLayer(poolSize,stride=poolSize) 
    convolution1dLayer(filterSize,numFilters,Padding="causal") 
    leakyReluLayer 
    layerNormalizationLayer 
    globalAveragePooling1dLayer 
    fullyConnectedLayer(numNeurons) 
    leakyReluLayer 
    layerNormalizationLayer 
    fullyConnectedLayer(numNeurons) 
    leakyReluLayer 
    layerNormalizationLayer 
    fullyConnectedLayer(numResponses) 
    regressionLayer]; 
 
The CNN[3x30,2x30] architecture is iden�cal to the CNN[3x20,2x20] but with: 

numFilters = 30;            % Number of 1D convolutional filters 
numNeurons = 30;            % Number of neurons in fully-connected layers 
 
The architectures of CNN[4x20,3x20] and CNN[4x30,3x30] differ from the previous ones by adding 
one more set of convolu�on and pooling layers before the global average pooling is applied: 
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    convolution1dLayer(filterSize,numFilters,Padding="causal") 
    leakyReluLayer 
    layerNormalizationLayer 
 
Which is added just before the row with globalAveragePooling1dLayer. 

And one more fully connected layer before the final regression layer: 

    leakyReluLayer 
    layerNormalizationLayer 
    fullyConnectedLayer(numResponses) 
 
Which is added just before the row with regressionLayer. 

All networks are trained with the Adam algorithm with batch size of 50, layer normaliza�on and early 
stopping implemented in Matlab. We further set the maximum number of epochs to 100 and the 
early-stopping pa�ence to 50. The maximum number of epochs was not reached in any of the 
simula�on tests. Rela�vely high value of the pa�ence was chosen as early tests have shown it tends 
to improve the out-sample model performance. 

The se�ng of the training algorithm is as follows: 

% Specify training options 
miniBatchSize = 50;     % Mini-batch size 
maxEpochs = 100;        % Maximum number of training epochs 
vPatience = 50;         % Early-stopping patience parameter 
options = trainingOptions("adam", ... 
    MiniBatchSize=miniBatchSize, ... 
    MaxEpochs=maxEpochs, ... 
    SequencePaddingDirection="left", ... 
    ValidationData={XNVal_CNN,YNVal}, ... 
    ValidationPatience = vPatience, ... 
    Plots="training-progress", ... 
    Verbose=0); 
 
% Train network 
net = trainNetwork(XNTrain_CNN,YNTrain,layers,options); 
 

Analogically to the MLP networks, normaliza�on of the inputs and outputs of the 1D-CNN was 
performed before training.  

To normalize the inputs, the 𝑁𝑁 = 50000 training-sample return vectors 𝒓𝒓(𝑖𝑖) were stacked together 
into one large return vector 𝑹𝑹 of size 𝑁𝑁 ∗ 𝑇𝑇 . The normaliza�on parameters 𝑚𝑚𝑹𝑹 = mean(𝑹𝑹) and 
𝑠𝑠𝑹𝑹 = �var(𝑹𝑹) were then computed and used to normalize the return vectors 𝒓𝒓(𝑖𝑖) on the training as 
well as the tes�ng sample with the transforma�on 𝒓𝒓∗ = (𝒓𝒓 −𝑚𝑚𝑹𝑹)/𝑠𝑠𝑹𝑹. 

To normalize the outputs 𝜽𝜽(𝑖𝑖) an analogical procedure to the one described in Appending B is applied. 
For each parameter 𝑗𝑗, we use the training sample vector of its values 𝜽𝜽𝐴𝐴 of size 𝑁𝑁, to compute the 
normaliza�on parameters 𝑚𝑚𝜽𝜽𝑗𝑗  and 𝑠𝑠𝜽𝜽𝑗𝑗, which are then used to perform the normaliza�on on both 

the training and the tes�ng sample, 𝜽𝜽𝐴𝐴∗ = �𝜽𝜽𝐴𝐴 − 𝑚𝑚𝜽𝜽𝑗𝑗� /𝑠𝑠𝜽𝜽𝑗𝑗, for all parameters 𝑗𝑗. 
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