

HISTORICAL CALIBRATION OF SVJD
MODELS WITH DEEP LEARNING

Milan Fičura
Jiří Witzany

IES Working Paper 36/2023

Institute of Economic Studies,

Faculty of Social Sciences,
Charles University in Prague

[UK FSV – IES]

Opletalova 26

CZ-110 00, Prague
E-mail : ies@fsv.cuni.cz

http://ies.fsv.cuni.cz

Institut ekonomických studií
Fakulta sociálních věd

Univerzita Karlova v Praze

Opletalova 26
110 00 Praha 1

E-mail : ies@fsv.cuni.cz

http://ies.fsv.cuni.cz

Disclaimer: The IES Working Papers is an online paper series for works by the faculty and
students of the Institute of Economic Studies, Faculty of Social Sciences, Charles University in
Prague, Czech Republic. The papers are peer reviewed. The views expressed in documents served
by this site do not reflect the views of the IES or any other Charles University Department. They
are the sole property of the respective authors. Additional info at: ies@fsv.cuni.cz

Copyright Notice: Although all documents published by the IES are provided without charge, they
are licensed for personal, academic or educational use. All rights are reserved by the authors.

Citations: All references to documents served by this site must be appropriately cited.

Bibliographic information:
Fičura M., Witzany J. (2023): " Historical Calibration of SVJD Models with Deep Learning " IES
Working Papers 36/2023. IES FSV. Charles University.

This paper can be downloaded at: http://ies.fsv.cuni.cz

mailto:IES@Mbox.FSV.CUNI.CZ
http://ies.fsv.cuni.cz/
mailto:IES@Mbox.FSV.CUNI.CZ
http://ies.fsv.cuni.cz/
mailto:ies@fsv.cuni.cz
http://ies.fsv.cuni.cz/

Historical Calibration of SVJD Models
with Deep Learning

Milan Fičura1

Jiří Witzany2

1Faculty of Finance and Accounting, Prague University of Economics and Business,
Czech Republic. E-mail: milan.ficura@vse.cz (corresponding author)

2Faculty of Finance and Accounting, Prague University of Economics and Business,
Czech Republic. E-mail: jiri.witzany@vse.cz

December 2023

Abstract:
We propose how deep neural networks can be used to calibrate the parameters of
Stochastic-Volatility Jump-Diffusion (SVJD) models to historical asset return time
series. 1-Dimensional Convolutional Neural Networks (1D-CNN) are used for that
purpose. The accuracy of the deep learning approach is compared with machine
learning methods based on shallow neural networks and hand-crafted features, and
with commonly used statistical approaches such as MCMC and approximate MLE.
The deep learning approach is found to be accurate and robust, outperforming the
other approaches in simulation tests. The main advantage of the deep learning
approach is that it is fully generic and can be applied to any SVJD model from which
simulations can be drawn. An additional advantage is the speed of the deep learning
approach in situations when the parameter estimation needs to be repeated on new
data. The trained neural network can be in these situations used to estimate the
SVJD model parameters almost instantaneously.

Keywords: Stochastic volatility, price jumps, SVJD, neural networks, deep learning,
CNN

Acknowledgement: This paper has been prepared under financial support of a grant
GAČR 22-19617S “Modeling the structure and dynamics of energy, commodity and
alternative asset prices”, which the authors gratefully acknowledge.

1

1. Introduc�on
Time-varying vola�lity is an established feature of financial �me series that plays a crucial role in risk
management and asset pricing. Unlike GARCH models (Bollerslev, 1986) and realized vola�lity models
(Andersen and Bollerslev, 1998) in which the condi�onal variance depends determinis�cally on past
returns, stochas�c vola�lity (SV) models (Taylor, 1982) view the variance as an unobservable
stochas�c process, allowing for great deal of flexibility in its specifica�on (Ghysels et al., 1996).

Log-SV model of Taylor (1982), in which the logarithm of variance follows an AR(1) process can be
extended in a variety of ways, including models with correla�on between vola�lity and returns
(Harvey and Shephard, 1996), non-Gaussian innova�ons (Jacquier et al., 2004), price jumps
(Andersen et al., 2002), vola�lity jumps (Eraker et al., 2003), infinite ac�vity jumps (Li et al., 2008),
regime switching (So, et al., 1998) or long-memory (Breidt, et al., 1998, Harvey, 1998).

The es�ma�on of SV models is, however, difficult, as their likelihood func�on involves intractable
integrals over the latent vola�lity process. Wide range of frequen�st and Bayesian approaches have
been proposed to cope with the es�ma�on problem (Bos, 2012).

Bayesian MCMC sampling (Jacquier, 1994) represents one of the most popular approaches for SV
models es�ma�on, with increasingly efficient MCMC samplers developed for most of the basic SV
model variants (Kim, Shephard and Chib, 1998, Omori et al., 2007, Nakajima and Omori, 2012,
Kastner and Frühwirth-Schnater, 2014, Hosszejni and Kastner, 2019). Efficient MCMC
implementa�ons for some of the SV model variants are available in R packages such as ASV (Omori
and Hashimoto, 2022) or stochvol (Kastner, 2016, Hosszejni and Kastner, 2021, Hosszejni and Kastner,
2023).

A drawback of MCMC is that it is model-specific, requiring major adjustments of the algorithm for any
model modifica�on. Among more generic Bayesian approaches is Par�cle MCMC (Andrieu et al.,
2010), and the par�cle learning methods (Liu and West, 2001, Carvalho, 2010, Fulop and Li, 2013,
Chopin et al., 2013). Certain fine-tuning of the par�cle filters is, however, s�ll needed for good
performance.

Frequen�st approaches to SV models es�ma�on include moment-based methods, such as GMM
(Andersen and Sorensen, 1996) and EMM (Andersen et al., 1999), quasi maximum likelihood (QML)
methods (Harvey et al., 1994), Monte-Carlo methods based on Importance Sampling (Sandman and
Koopman, 1996, Liesenfeld and Richard, 2003), and methods that approximate the likelihood func�on
with numerical integra�on (Friedman and Harris, 1998, Watanabe, 1999).

Efficient MLE methods, based on Laplace approxima�on and automa�c differen�a�on (Skaug and Yu,
2014), or numerical integra�on (Bégin and Boudreault, 2021) are implemented in the R packages
stochvolTMB (Wahl, et al., 2021) and SVDNF (Mahjoubi et al., 2023) respec�vely.

While the current repertoire of SV model es�ma�on tools allows for efficient es�ma�on of the most
common SV model variants, none of them offers a fully generic method to es�mate any type of SV
model without addi�onal modifica�ons and fine-tuning of the es�ma�on algorithm. The main
contribu�on of our study is to propose such a generic approach based on deep neural networks
(DNN). Our deep learning approach can es�mate parameters of any SV model as long as simula�ons
from it can be drawn. As shown in the simula�on study, it is also highly accurate and robust, suffering
from significantly lower miss-convergence rates than other commonly used methods such as MCMC
or MLE. An addi�onal advantage of the DNN approach is its speed in situa�ons where the same

2

model needs to be re-es�mated mul�ple �mes as the re-es�ma�on on new data is nearly
instantaneous.

The proposed approach is inspired by neural network calibra�on of SV models for op�on pricing
(Hernandez, 2017). Analogically to the SV model es�ma�on on historical return �me series, which is
the task of our current study, the calibra�on of SV model parameters (Heston, 1993, Bates, 1996) to
the observed op�on prices is highly computa�onally demanding. To simplify the calibra�on, it was
proposed to u�lize a neural network (NN) to approximate either the op�on pricing model (Liu et al.,
2019, Horvath et al., 2021, Büchel, et al., 2022), the en�re model calibra�on procedure (Hernandez,
2017, Kim et al., 2023), or the rela�onship between plain-vanilla and exo�c op�ons (Cao et al., 2022),
resul�ng in significant speed gains as well as higher robustness (Cao et al., 2022).

The direct approach (Hernandez, 2017) starts by simula�ng a large dataset of SV model parameter
vectors and calcula�ng selected op�on prices for each of them. Neural network (NN) is then trained
to predict the model parameters based on the set of calculated op�on prices. Once trained, the NN
can be used for near-instantaneous calibra�on of the SV models to op�on prices observed on the
market.

As shown in Witzany and Fičura (2023a), the NN based calibra�on of SV models can be successfully
applied also on illiquid op�on markets, with few or even zero observed op�on prices, by enhancing
the NN predictor set with the generalized moments computed from historical asset returns �me
series. Our paper can be viewed as an extension of this approach, focusing on the case where the SV
model needs to be calibrated to the historical �me-series of returns only. This can be the case either
on markets where no op�on prices are available or in situa�ons where the parameters of the SV
model under the physical probability se�ng are needed (rather than the risk-neutral ones), such as in
risk-management and asset pricing applica�ons.

One of the main complica�ons in the Witzany and Fičura (2023ab) approach is the need to convert
the historical �me-series of returns to a set of generalized moments sufficient for the SV model
es�ma�on, which can be model-specific. To avoid this step, we replace the shallow neural network
with a deep neural network, which can be applied to the �me series of returns directly, learning the
transforma�ons of the return �me series needed for the SV model es�ma�on on its own.

We use simula�on tests to compare our deep learning approach with the neural network method
from Witzany and Fičura (2023a) and with standard sta�s�cal approaches based on MCMC
implemented in the R package stochvol (Kastner, 2016, Hosszejni and Kastner, 2021, Hosszejni and
Kastner, 2023) and MLE, implemented in the R package stochvolTMB (Skaug and Yu, 2014, Wahl, et
al., 2021). The tests confirm that the proposed deep learning approach is highly accurate and robust.

The rest of this paper is organized as follows. Sec�on 2 introduces the baseline SVJD model
specifica�on used in our study and the NN/DNN model calibra�on approaches. Sec�on 3 presents the
simula�on study comparing the performance NN/DNN methods with MCMC for our baseline SVJD
model and with MCMC and MLE for the SV models implemented in the R packages stochvol and
stochvolTMB. Finally, the Conclusion concludes the paper discusses possibili�es for future research.

2. Neural Network es�ma�on of SVJD models
For the illustra�on of our deep learning SV model es�ma�on approach, we use a Gaussian SVJD
model with price jumps. This is the baseline model specifica�on on which we illustrate the
performance of the NN based calibra�on method. Robustness of the approach is further assessed for
alterna�ve SV model variants from the R packages stochvol and stochvolTMB in sec�ons 3.3 and 3.4.

3

2.1. SVJD model specifica�on
Assume that the logarithmic returns 𝑟𝑟𝑡𝑡 = 𝑝𝑝𝑡𝑡 − 𝑝𝑝𝑡𝑡−1 follow a discrete-�me process:

𝑟𝑟𝑡𝑡 = 𝜇𝜇 + 𝜎𝜎𝑡𝑡𝜀𝜀𝑟𝑟,𝑡𝑡 + 𝐽𝐽𝑡𝑡𝑍𝑍𝑡𝑡 (1)

Where 𝑝𝑝𝑡𝑡 denotes the logarithm of the asset price at �me 𝑡𝑡, 𝑟𝑟𝑡𝑡 is the logarithmic return, 𝜇𝜇 is the
uncondi�onal mean, 𝜎𝜎𝑡𝑡 is the �me-varying vola�lity, 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑁𝑁(0,1) is i.i.d. Gaussian white noise,
𝐽𝐽𝑡𝑡~𝑁𝑁�𝜇𝜇𝐽𝐽 ,𝜎𝜎𝐽𝐽� is i.i.d. Gaussian variable determining the jump sizes, and 𝑍𝑍𝑡𝑡~𝐵𝐵𝐵𝐵𝑟𝑟𝐵𝐵(𝜆𝜆)is a Bernoulli
distributed variable determining the jump occurrences that arrive with intensity 𝜆𝜆.

The log-variance ℎ𝑡𝑡 = log(𝜎𝜎𝑡𝑡2) is assumed to follow the AR(1) process (Taylor, 1982):

ℎ𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽ℎ𝑡𝑡−1 + 𝛾𝛾𝜀𝜀ℎ,𝑡𝑡 (2)

Where ℎ𝐿𝐿𝐿𝐿 = 𝛼𝛼/(1 − 𝛽𝛽) represents the long-term log-variance, 𝛽𝛽 is an AR(1) autoregressive
parameter, 𝛾𝛾 is the vola�lity of the log-variance and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) is i.i.d. Gaussian white noise
assumed to be uncorrelated with 𝜀𝜀𝑟𝑟,𝑡𝑡 (this will be relaxed for the SV models in sec�ons 3.3 and 3.4).

The goal of the es�ma�on procedure is to es�mate the vector of parameters 𝜽𝜽 = �𝜇𝜇,𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝜇𝜇𝐽𝐽,𝜎𝜎𝐽𝐽, 𝜆𝜆�
based on the observed �me series of asset returns 𝒓𝒓 = {𝑟𝑟1, … , 𝑟𝑟𝐿𝐿}.

2.2. MCMC for SVJD model es�ma�on
As a benchmark method to es�mate the SVJD model in the previous sec�on we use the Markov-
Chain Monte-Carlo (MCMC) method (Jacquier, 1994). MCMC allows us to sample from the posterior
density 𝑝𝑝(𝜽𝜽∗|𝒓𝒓), where 𝜽𝜽∗ denotes a vector of all model parameters and latent states, 𝜽𝜽∗ =
{𝜽𝜽,𝑽𝑽, 𝑱𝑱,𝒁𝒁}, with 𝑽𝑽 = ln(𝒉𝒉) denotes the vector of latent stochas�c variances, 𝑱𝑱 the vector of latent
jumps sizes and 𝒁𝒁 the vector of latent jump occurrences. Gibbs sampler is used to draw samples from
the posterior density 𝑝𝑝(𝜽𝜽∗|𝒓𝒓) by using informa�on about the condi�onal densi�es 𝑝𝑝(𝜃𝜃𝑖𝑖∗|𝜽𝜽(−𝑖𝑖)

∗ , 𝒓𝒓). As
the condi�onal density 𝑝𝑝�𝑉𝑉𝑖𝑖|𝑽𝑽(−𝑖𝑖),𝜽𝜽(−𝒗𝒗)

∗ ,𝒓𝒓� is intractable, we use the Accept-Reject Gibbs Sampler
proposed in Kim, Shephard and Chib (1998) to sample 𝑉𝑉𝑖𝑖. The design of the MCMC algorithm is
described in Appendix A.

2.3. NN approach to SVJD model es�ma�on
Neural Network (NN) based calibra�on approach proposed in Witzany and Fičura (2023a) uses a
simulated dataset of parameter and return vectors �𝜽𝜽(𝑖𝑖),𝒓𝒓(𝑖𝑖)� for 𝑖𝑖 = 1, … ,𝑁𝑁 in order to train a
shallow neural network (Mul�-Layer Perceptron, MLP) to es�mate the parameter vector 𝜽𝜽(𝑖𝑖) based
on a set of generalized moments 𝑴𝑴(𝑖𝑖) computed from each simulated return vector 𝒓𝒓(𝑖𝑖). The goal of
the neural network is to approximate the func�on 𝜽𝜽 = 𝑓𝑓(𝑴𝑴) describing the rela�onship between the
parameter vector 𝜽𝜽 and the generalized moments 𝑴𝑴, making the procedure conceptually similar to
other moment-based SV model es�ma�on methods (Andersen and Sorensen, 1996, Andersen et al.,
1999), but with the calibra�on procedure replaced with a neural network. The main prac�cal
limita�on of the approach is the need to expertly specify the set of generalized moments 𝑴𝑴 that
contain sufficient informa�on for the es�ma�on of 𝜽𝜽, which may differ depending on the
specifica�on of the SV model. For our study, we selected the generalized moments 𝑴𝑴 used for the
es�ma�on of the SVJD model with the NN approach expertly and they are described in Appendix B.

2.4. DNN approach to SVJD model es�ma�on
The main advantage of deep neural networks (DNN) is their ability to learn the set of predic�ve
features from raw data, avoiding the need for expert specifica�on and fine-tuning of the relevant
features (LeCun et al., 2015). In our DNN approach to SVJD model calibra�on we simulate a dataset of

4

parameter and return vectors �𝜽𝜽(𝑖𝑖),𝒓𝒓(𝑖𝑖)� for 𝑖𝑖 = 1, … ,𝑁𝑁 and then train a Deep Neural Network (DNN)
to es�mate the parameter vector 𝜽𝜽(𝑖𝑖) based on the en�re vector of simulated returns 𝒓𝒓(𝑖𝑖). The neural
network thus approximates the func�on 𝜽𝜽 = 𝑓𝑓(𝒓𝒓) describing the rela�onship between the
parameter vector 𝜽𝜽 and the return vector 𝒓𝒓. The principle of the method is thus similar as in the NN
approach but with the set of relevant moments learned implicitly by the DNN from the return �me
series 𝒓𝒓.

While many types of DNN may poten�ally be used to es�mate the func�on 𝜽𝜽 = 𝑓𝑓(𝒓𝒓)., we focus on
the 1-Dimensional Convolu�onal Neural Networks (1D-CNN) in our study. The 1D-CNN processes the
return vector 𝒓𝒓 with a set of 1D convolu�onal filters followed by (average) pooling layers and global
(average) pooling a�er the last convolu�onal layer. These convolu�onal and pooling opera�ons
convert the �me series 𝒓𝒓 into a set of features 𝑴𝑴 = 𝑔𝑔(𝒓𝒓) which are subsequently fed into a set of
fully connected layers, in an analogical way as the generalized moments in the NN based approach,
but with the relevant moments 𝑴𝑴 = 𝑔𝑔(𝒓𝒓) learned implicitly by the 1D-CNN. The need to manually
finetune the set of generalized moments 𝑴𝑴 is thus avoided. The architecture of the 1D-CNN used in
our study and the se�ngs of the training algorithm are discussed in Appendix C.

3. Simula�on tests
3.1. SVJD model es�ma�on – Simula�on test design
The goal of this sec�on is to compare the accuracy of the NN/DNN based SVJD model calibra�on with
the MCMC approach used as benchmark. To train the NN/DNN models, we draw a random dataset of
𝑁𝑁 = 50000 parameter combina�ons 𝜽𝜽(𝑖𝑖) for 𝑖𝑖 = 1, … ,𝑁𝑁 and for each of them simulate a return
vector 𝒓𝒓(𝑖𝑖) of length 𝑇𝑇 = 2000 by using the SVJD model described in sec�on 2.1. The iden�cal
procedure but with dataset size 𝑁𝑁𝑂𝑂𝑂𝑂𝑡𝑡 = 500 is applied to construct the tes�ng sample. Accuracy of
the NN/DNN, trained on the development sample is then compared with the accuracy of the MCMC
method on the tes�ng sample. The MCMC is applied only to the tes�ng sample.

To draw the parameter vectors 𝜽𝜽(𝑖𝑖) = �𝜇𝜇, 𝑣𝑣𝐿𝐿𝐿𝐿 ,𝛽𝛽, 𝛾𝛾, 𝜇𝜇𝐽𝐽 ,𝜎𝜎𝐽𝐽, 𝜆𝜆� we use the uniform distribu�ons:

• 𝜇𝜇 ~ 𝑈𝑈(−0.1,0.1)/250 (mean daily return) (mju)
• 𝑣𝑣𝐿𝐿𝐿𝐿~ 𝑈𝑈(0.005,0.015)^2 (long-term variance of daily returns) (varLT)
• 𝛽𝛽 ~ 𝑈𝑈(0.79,0.99) (log-variance AR(1) parameter) (beta)
• 𝛾𝛾 ~ 𝑈𝑈(0.05,0.50) (vola�lity of the log-variance) (gamma)
• 𝜇𝜇𝐽𝐽 ~ 𝑈𝑈(−0.05,0.05) (mean jump size) (mjuJ)

• 𝜎𝜎𝐽𝐽 ~ 𝑈𝑈(0.01,0.10) (jump vola�lity) (sigmaJ)
• 𝜆𝜆 ~ 𝑈𝑈(0.005,0.05) (daily jump probability) (lambda)

Where we use the transforma�on 𝛼𝛼 = ln(𝑣𝑣𝐿𝐿𝐿𝐿)(1− 𝛽𝛽) to get the parameter 𝛼𝛼 from equa�on (2). The
parameter bounds were set to values that may be realis�cally observed for financial �me series.

The se�ngs of the three es�ma�on methods (MLP, 1D-CNN and MCMC) are as follows:

MCMC: MCMC algorithm described in Appendix A is used with 20 000 MCMC itera�ons and 10 000
itera�on burn-out period. The point es�mates are computed as posterior means from the remaining
10 000 MCMC itera�ons following the burn-out sample.

MLP: Eight variants of the Mul�-Layer Perceptron neural network are used, alterna�vely with 1-4
hidden layers and 20 or 30 neurons in each layer. The MLP networks are trained with the Levenberg-

5

Marquardt algorithm in Matlab with the default se�ngs. The predictor set of generalized moments
𝑴𝑴(𝑖𝑖) computed for each simulated vector 𝒓𝒓(𝑖𝑖) is described in Appendix B.

1D-CNN: Four 1D Convolu�onal Neural Network variants are tested, alterna�vely with 3 or 4
convolu�onal layers followed by 2 or 3 fully connected layers, each one alterna�vely with 20 or 30
filters/neurons. Filter width and the pooling width is set to 5 and stride equal to 5 is applied in all
pooling layers except the first one. Average pooling is used and the Leaky ReLu ac�va�on func�on is
used in the convolu�onal and fully connected layers. The networks are trained with the Adam
algorithm with batch size of 50, layer normaliza�on and early stopping implemented in Matlab. The
precise architecture of the tested networks and se�ngs of the training algorithm are discussed in
Appendix C.

3.2. SVJD model es�ma�on – Simula�on test results
Performance of the individual methods is assessed with the out-sample R-Squared on a tes�ng
dataset of newly drawn 𝑁𝑁𝑂𝑂𝑂𝑂𝑡𝑡 = 500 parameter combina�ons and simulated return vectors. The
values of the out-sample R-Squared for all methods and SVJD model parameters are shown in Table 1
where the green color indicates higher accuracy while the red color indicates lower accuracy.

Overall, the 1D-CNN based es�mates achieved the highest accuracy for most of the SVJD model
parameters except for 𝑣𝑣𝐿𝐿𝐿𝐿 for which they were (slightly) outperformed by the MLP method. 1D-CNN,
on the other hand, significantly outperformed MLP for 𝛽𝛽, 𝛾𝛾 and 𝜆𝜆. The results are robust with respect
to the chosen MLP or 1D-CNN network architecture. On average the MLP networks with more hidden
layers slightly outperformed the ones with less hidden layers. For the 1D-CNN the simplest
specifica�on with 3 convolu�onal layers with 20 filters and 3 fully connected layers with 20 neurons
achieved the best results for most of the parameters except for 𝛽𝛽 and 𝛾𝛾, for which the more complex
1D-CNN with 4 convolu�onal layers and 3 fully connected layers worked slightly beter.

MLP and 1D-CNN methods significantly outperformed the MCMC for all SVJD model parameters. The surprisingly low values
of the R-Squared for MCMC seem to be caused mostly by miss-converging chains. This holds in particular for the log-variance
AR(1) parameter 𝛽𝛽 for which the MCMC achieved highly negative R-Squared as for some of the simulated time series the
MCMC chain converged to a value significantly below the lower bound of the distribution 𝛽𝛽 ~ 𝑈𝑈(0.79,0.99) from which the
simulations of 𝛽𝛽 were drawn. We illustrate this issue on
Figure 1 and Figure 2 which compare the actual (observed) values of the parameter 𝛽𝛽 for the 500
simula�on runs with the predicted values (es�mates) of the MCMC and CNN[3x20,2x20] methods
respec�vely.

6

Table 1 – SVJD model – Simula�on test results (out-sample R2)
The table shows out-sample R-Squared of parameter es�mates 𝜽𝜽 = �𝜇𝜇, 𝜇𝜇𝐽𝐽,𝜎𝜎𝐽𝐽, 𝑣𝑣𝐿𝐿𝐿𝐿 ,𝛽𝛽, 𝛾𝛾, 𝜆𝜆� computed with the
three alterna�ve model es�ma�on methods (MLP, CNN and MCMC) on a simulated dataset of 𝑁𝑁𝑂𝑂𝑂𝑂𝑡𝑡 = 500
parameter combina�ons and return �me-series of length 𝑇𝑇 = 2000. For MLP the values in [] brackets denote
the number of neurons in each layer, while for CNN they denote the number of convolu�onal layers x filters
followed by the number of fully connected layers x neurons.

Figure 1 – SVJD model – Out-sample es�mates of beta produced by the MCMC method
The figure shows out-sample mean posterior es�mates of parameter 𝛽𝛽 computed with the MCMC method. It is
apparent that while the range of simulated values corresponds to 𝛽𝛽 ~ 𝑈𝑈(0.79,0.99), MCMC o�en miss-
converged, resul�ng in es�mates that are significantly below the minimum value of 0.79.

Model mju mjuJ sigmaJ varLT beta gamma lambda
MLP[20] 0.4691 0.8269 0.8540 0.9462 0.5425 0.6948 0.6515
MLP[30] 0.4750 0.8367 0.8522 0.9467 0.5473 0.7042 0.6610
MLP[20,20] 0.4764 0.8302 0.8712 0.9480 0.5442 0.7150 0.6700
MLP[30,30] 0.4846 0.8344 0.8659 0.9470 0.5562 0.7149 0.6630
MLP[20,20,20] 0.4902 0.8406 0.8715 0.9419 0.5527 0.7257 0.6756
MLP[30,30,30] 0.4814 0.8327 0.8684 0.9463 0.5584 0.7199 0.6702
MLP[20,20,20,20] 0.4959 0.8427 0.8806 0.9473 0.5575 0.7297 0.6729
MLP[30,30,30,30] 0.4891 0.8413 0.8760 0.9489 0.5494 0.7358 0.6792
CNN[3x20,2x20] 0.5378 0.8674 0.8839 0.9426 0.6600 0.8588 0.7216
CNN[3x30,2x30] 0.4858 0.8669 0.8775 0.9412 0.6717 0.8469 0.7186
CNN[4x20,3x20] 0.5123 0.8551 0.8839 0.9432 0.6877 0.8675 0.7129
CNN[4x30,3x30] 0.5075 0.8562 0.8756 0.9403 0.6789 0.8659 0.7138
MCMC -0.0269 -0.9123 0.4593 0.8224 -12.4789 0.6950 0.4886

7

Figure 2 – SVJD model – Out-sample es�mates of beta produced by the 1D-CNN
The figure shows out-sample es�mates of parameter 𝛽𝛽 computed with the CNN[3x20,2x20]. Unlike the MCMC
method there are no apparent miss-convergence for any of the simula�ons with all of the es�mates staying in
the range of 𝛽𝛽 ~ 𝑈𝑈(0.79,0.99) from which the simulated parameters were drawn.

To isolate the miss-convergence cases, we construct a proxy for miss-convergence by compu�ng the
number of parameter es�mates that are more than two standard devia�ons away from their true
value for each of the three methods (MLP, CNN and MCMC). The numbers of miss-convergence cases
for each parameter and es�ma�on method are shown in Table 2. We can see that while the MCMC
miss-converged on 125 (e.g. 25%) of the simulated �me series for parameter 𝛽𝛽, the MLP and 1D-CNN
methods suffer from almost no miss-convergence cases.

Table 2 – SVJD model – Simula�on test results – Number of miss-convergence cases
The table shows the number of simula�ons in which each of the three es�ma�on methods (MLP, CNN and
MCMC) es�mated a given parameter from 𝜽𝜽 = �𝜇𝜇, 𝜇𝜇𝐽𝐽,𝜎𝜎𝐽𝐽, 𝑣𝑣𝐿𝐿𝐿𝐿 ,𝛽𝛽, 𝛾𝛾, 𝜆𝜆� more than two sample standard
devia�ons away from the actual simulated parameter value. The simula�on test is based on 𝑁𝑁𝑂𝑂𝑂𝑂𝑡𝑡 = 500
simulated parameter combina�ons and return �me-series of length 𝑇𝑇 = 2000.

Model mju mjuJ sigmaJ varLT beta gamma lambda
MLP[20] 1 0 0 0 1 1 0
MLP[30] 1 0 0 0 1 1 1
MLP[20,20] 1 1 0 0 1 1 2
MLP[30,30] 2 1 0 0 1 1 1
MLP[20,20,20] 2 0 0 0 1 1 2
MLP[30,30,30] 2 0 0 0 1 1 1
MLP[20,20,20,20] 2 0 0 0 1 1 2
MLP[30,30,30,30] 2 1 0 0 1 1 2
CNN[3x20,2x20] 2 0 0 0 0 0 0
CNN[3x30,2x30] 3 0 0 0 2 0 0
CNN[4x20,3x20] 2 0 0 0 0 0 0
CNN[4x30,3x30] 2 0 0 0 1 0 1
MCMC 24 14 16 2 125 1 8

8

To verify the performance of the tested SVJD model es�ma�on methods (MLP, CNN and MCMC) more
fairly, we recalculate the R-Squared only on the simula�ons for which convergence was achieved by
all es�ma�on methods for all model parameters. In total for 167 simula�ons at least one method
miss-converged (based on the two standard devia�on criterion discussed) for at least one of the SVJD
model parameters, leaving us with a sample of 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 333 simula�ons for which all methods
converged rela�vely close to the actual parameter values. The values of the R-Squared on these
𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 333 simula�ons are shown in Table 3.

Table 3 – SVJD model – Simula�on test results (out-sample R2) – Corrected for miss-convergence
The table shows out-sample R-Squared of parameter es�mates 𝜽𝜽 = �𝜇𝜇, 𝜇𝜇𝐽𝐽,𝜎𝜎𝐽𝐽, 𝑣𝑣𝐿𝐿𝐿𝐿 ,𝛽𝛽, 𝛾𝛾, 𝜆𝜆�, computed with the
three alterna�ve model es�ma�on methods (MLP, CNN and MCMC) on a simulated dataset of 𝑁𝑁𝐴𝐴𝐴𝐴𝐴𝐴 = 333
parameter combina�ons and return �me-series of length 𝑇𝑇 = 2000 for which the es�mates of all of the tested
models/parameters do not deviate from the true parameters by more than 2 sample standard devia�ons.

We can see that while the MCMC achieves posi�ve R-Squared values once the miss-convergence
cases are removed, it is s�ll ge�ng outperformed by the MLP and the 1D-CNN methods (especially
for 𝛽𝛽), with the 1D-CNN achieving the best results for most of the SVJD model parameters (except for
𝑣𝑣𝐿𝐿𝐿𝐿).

The results indicate that the 1D-CNN method is able to successfully es�mate all of the SVJD model
parameters 𝜽𝜽 by working with the return vector 𝒓𝒓 alone, avoiding the need to design a model-specific
es�ma�on algorithm as in the case of the MCMC, or the need of a fine-tuned set of model-specific
generalized moments 𝑴𝑴 as in the case for the MLP approach.

Among the limita�ons of the performed study is the rela�vely simple design of the benchmark
MCMC algorithm which is mostly based on the algorithms from Jacquier (1994) and Kim, Shephard
and Chib (1998) and may not be en�rely op�mal. Another limita�on may be in the use of MCMC
mean posterior es�mates as a benchmark, which may deviate from the Maximum Likelihood
Es�mates for asymmetric posterior distribu�ons. Finally, a ques�on remains of whether the proposed
1D-CNN model is indeed fully generic and applicable to any type of SV model including ones with
non-Gaussian distribu�ons of innova�ons and asymmetry (as well as possibly other effects). To
par�ally alleviate these issues and verify the robustness of the 1D-CNN approach we compare its
performance with two highly op�mized SV model es�ma�on methods, based alterna�vely on MCMC
and MLE, implemented in the popular R packages stochvol and stochvolTMB. Furthermore, we extend
the comparison to all SV model variants that are implemented in these packages. The tes�ng is
performed in sec�ons 3.3 and 3.4 respec�vely.

Model mju mjuJ sigmaJ varLT beta gamma lambda
MLP[20] 0.5183 0.8359 0.8462 0.9309 0.5886 0.6243 0.6847
MLP[30] 0.5195 0.8436 0.8472 0.9306 0.5853 0.6335 0.6975
MLP[20,20] 0.5237 0.8445 0.8636 0.9322 0.5915 0.6472 0.7030
MLP[30,30] 0.5366 0.8440 0.8561 0.9302 0.5950 0.6477 0.6958
MLP[20,20,20] 0.5405 0.8476 0.8647 0.9309 0.5917 0.6555 0.7072
MLP[30,30,30] 0.5341 0.8471 0.8662 0.9304 0.5972 0.6471 0.7021
MLP[20,20,20,20] 0.5449 0.8486 0.8719 0.9318 0.5966 0.6592 0.6966
MLP[30,30,30,30] 0.5359 0.8533 0.8674 0.9325 0.5927 0.6683 0.7087
CNN[3x20,2x20] 0.5979 0.8677 0.8797 0.9222 0.7439 0.8302 0.7525
CNN[3x30,2x30] 0.5335 0.8687 0.8705 0.9281 0.7559 0.8083 0.7505
CNN[4x20,3x20] 0.5519 0.8531 0.8827 0.9272 0.7657 0.8316 0.7494
CNN[4x30,3x30] 0.5496 0.8585 0.8733 0.9215 0.7544 0.8359 0.7539
MCMC 0.2619 0.7732 0.7535 0.9139 0.5533 0.7965 0.6540

9

3.3. SV model es�ma�on – stochvol package
The goal of this sec�on is to verify the robustness of our DNN based SVJD model es�ma�on approach
by applying it to the various SV model specifica�ons implemented in the R package stochvol
(Hosszejni and Kastner 2023) which allows for efficient SV model es�ma�on with modern MCMC
algorithms based on the studies of Kastner (2016) and Hosszejni and Kastner (2021).

Package stochvol allows for the simula�on and es�ma�on of four SV model specifica�ons:

• Log-SV model with Gaussian errors (SV)
• Asymmetric log-SV model with Gaussian errors (ASV)
• Log-SV model with t-distributed errors (SV-t)
• Asymmetric log-SV model with t-distributed errors (ASV-t).

The package uses the following SV model nota�on:

• Return equa�on: 𝑟𝑟𝑡𝑡 = 𝐵𝐵ℎ𝑡𝑡/2𝜀𝜀𝑟𝑟,𝑡𝑡
• Log-variance equa�on: ℎ𝑡𝑡 = 𝜇𝜇 + 𝜙𝜙(ℎ𝑡𝑡−1 − 𝜇𝜇) + 𝜎𝜎𝜀𝜀ℎ,𝑡𝑡

Where 𝑟𝑟𝑡𝑡 denotes the logarithmic return in period 𝑡𝑡 and ℎ𝑡𝑡 the logarithmic variance, while 𝜀𝜀𝑟𝑟,𝑡𝑡 and
𝜀𝜀ℎ,𝑡𝑡 are their error terms whose distribu�on defines the four possible model specifica�ons:

• SV model  Error terms 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑁𝑁(0,1) and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) are uncorrelated.
• ASV model  Error terms 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑁𝑁(0,1) and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) are correlated with correla�on 𝜌𝜌.
• SV-t model  Error terms 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑇𝑇(0,1, 𝜈𝜈) and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) are uncorrelated.
• ASV-t model  Error terms 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑇𝑇(0,1, 𝜈𝜈) and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) are correlated with correla�on 𝜌𝜌.

As the asymmetric SV models require a different set of generalized moments than the SVJD model in
sec�on 3.1. for the MLP method to provide compe��ve results (Witzany and Fičura, 2023b), we
perform the comparison only between the newly proposed DNN approach and the MCMC method
implemented in the stochvol package. Addi�onally, for the sake of sparsity we show the results only
for the simplest 1D-CNN architecture from sec�on 3.2. denoted as CNN[3x20,2x20], represen�ng a
1D-CNN with 3 convolu�onal layers with 20 filters each and 2 fully connected layers with 20 neurons
each. The results for other 1D-CNN architectures from sec�on 3.2. are qualita�vely similar.

Apart from that, the design of the test is the same as in the previous sec�on. To train the 1D-CNN, we
draw a random dataset of 𝑁𝑁 = 50000 parameter combina�ons 𝜽𝜽(𝑖𝑖) and for each of them draw a
vector of simulated returns 𝒓𝒓(𝑖𝑖) of length 𝑇𝑇 = 2000. Similar dataset of size 𝑁𝑁𝑂𝑂𝑂𝑂𝑡𝑡 = 500 is drawn to
get the tes�ng sample on which the accuracy of the 1D-CNN and the MCMC method is compared.
The MCMC is run with 20 000 itera�ons with 10 000 itera�on burn-out period and default se�ngs.

Finally, the stochvol model parameters are drawn from the following distribu�ons:

• 𝜇𝜇 ~ 𝑈𝑈(−12,−7) (long-term log-variance) (mju)
• 𝜙𝜙 ~ 𝑈𝑈(0.90,0.995) (log-variance AR(1) parameter) (phi)
• 𝜎𝜎 ~ 𝑈𝑈(0.05,0.50) (vola�lity of the log-variance) (sigma)
• 𝜌𝜌 ~ 𝑈𝑈(−0.9,0.9) (correla�on between log-variance and returns) (rho)
• 𝜈𝜈 ~ 𝑈𝑈(3,10) (degrees of freedom of the t-distribu�on) (nu)

The results of the simula�on test are shown in Table 4. The out-sample R-Squared values for all
parameters and models are shown in Panel A, the miss-convergence rates based on the two standard

10

devia�on criterion are shown in Panel B, and the corrected R-Squared values on a subset of
simula�ons for which both methods converged are shown in Panel C.

Table 4 – stochvol models – Simula�on test results (out-sample R2)
The table summarizes the performance of our 1D-CNN es�ma�on approach in comparison with the MCMC
algorithms implemented in the R package stochvol for four SV model variants: SV, ASV, SV-t and ASV-t. Panel A
shows the out-sample R-Squared of parameter es�mates 𝜽𝜽 = {𝜇𝜇,𝜙𝜙,𝜎𝜎,𝜌𝜌, 𝜈𝜈} computed alterna�vely with the
CNN[3x20,2x20] method or with MCMC method on a simulated dataset of 𝑁𝑁𝑂𝑂𝑂𝑂𝑡𝑡 = 500 parameter
combina�ons and return �me-series of length 𝑇𝑇 = 2000. Panel B shows the number of simula�ons for which
each of the two methods miss-converged in sense that the model es�mate of a given parameter is more than
two sample standard devia�ons aways from the actual value. Panel C shows the corrected R-Squared for each
model specifica�on once the simula�ons on which any of the two es�ma�on methods miss-converged (for any
of the parameters) are removed from the dataset. This results in 𝑁𝑁𝑆𝑆𝑆𝑆 = 432, 𝑁𝑁𝐴𝐴𝑆𝑆𝑆𝑆 = 445, 𝑁𝑁𝑆𝑆𝑆𝑆−𝑡𝑡 = 349 and
𝑁𝑁𝐴𝐴𝑆𝑆𝑆𝑆−𝑡𝑡 = 278 observa�ons for the SV, ASV, SV-t and ASV-t models respec�vely.

We can see from Panel A that the 1D-CNN outperforms the MCMC algorithms from the package
stochvol for all tested models and parameters. Panel B further shows that while the MCMC miss-
converged for up to 25% of the simulated �me-series, 1D-CNN miss-converged in only one simula�on

Model Method mu phi sigma rho nu
CNN[3x20,2x20] 0.9708 0.7810 0.9447
MCMC 0.9658 -14.8476 0.8936
CNN[3x20,2x20] 0.9773 0.7855 0.9502 0.9556
MCMC 0.4313 -12.4391 0.8334 0.9301
CNN[3x20,2x20] 0.9713 0.7289 0.9200 0.7366
MCMC 0.9708 -31.9323 0.4499 -2.0128
CNN[3x20,2x20] 0.9670 0.7448 0.9166 0.9347 0.7587
MCMC 0.8690 -53.5093 -0.8546 0.6482 -4.3263

Model Method mu phi sigma rho nu
CNN[3x20,2x20] 0 0 0
MCMC 1 67 0
CNN[3x20,2x20] 0 1 0 0
MCMC 10 45 2 0
CNN[3x20,2x20] 0 0 0 0
MCMC 0 96 12 91
CNN[3x20,2x20] 0 0 0 0 0
MCMC 4 131 49 0 154

Model Method mu phi sigma rho nu
CNN[3x20,2x20] 0.9671 0.8049 0.9315
MCMC 0.9711 0.6360 0.9282
CNN[3x20,2x20] 0.9788 0.8167 0.9425 0.9638
MCMC 0.9324 0.6278 0.9196 0.9601
CNN[3x20,2x20] 0.9691 0.7370 0.8902 0.7328
MCMC 0.9695 0.5929 0.8678 0.4914
CNN[3x20,2x20] 0.9589 0.8154 0.8903 0.9470 0.7366
MCMC 0.9248 0.3270 0.6317 0.6619 0.2125

Panel A: Out-sample R-squared on 500 simulated parameter combinations

Panel C: Out-sample R-squared on parameter combinations where both methods converged

SV

ASV

SV-t

ASV-t

Panel B: Miss-convergence rates on 500 simulated parameter combinations

SV-t

ASV-t

SV

ASV

SV-t

ASV-t

SV

ASV

11

(for the ASV model parameter 𝜙𝜙). Finally, Panel C shows that the superior performance of the 1D-
CNN persists even once the miss-converging cases are removed from the sample (especially for 𝜙𝜙 and
𝜈𝜈).

3.4. SV model es�ma�on – stochvolTMB package
While the DNN approach achieved superior performance against MCMC in the SVJD/SV model
es�ma�on tests in sec�ons 3.2. and 3.3., this may poten�ally be explained by the tendency of MCMC
chains to some�mes miss-converge. Addi�onally, the conversion of MCMC samples into mean
posterior es�mates may result in a devia�on from the Maximum Likelihood Es�mates (MLE) if the
posterior distribu�ons of the model parameters are asymmetric.

To further verify the robustness of the DNN approach we compare its performance against the
approximate Maximum Likelihood (MLE) approach based on Laplace approxima�on and automa�c
differen�a�on (Skaug and Yu, 2014) implemented in the R packages stochvolTMB (Wahl, et al., 2021).

Package stochvoTMB allows for the simula�on and es�ma�on of four SV model specifica�ons:

• Log-SV model with Gaussian errors (SV)
• Asymmetric log-SV model with Gaussian errors (ASV)
• Log-SV model with skew-Gaussian errors (SV-sg)
• Log-SV model with t-distributed errors (SV-t).

Compared to the stochvol, the package stochvolTMB thus allows also for the SV-sg model with skew-
Gaussian error distribu�on but does not allow for an asymmetric version of the SV-t model.

The package uses the following SV model nota�on:

• Return equa�on: 𝑟𝑟𝑡𝑡 = 𝜎𝜎𝑟𝑟𝐵𝐵ℎ𝑡𝑡/2𝜀𝜀𝑟𝑟,𝑡𝑡
• Log-variance equa�on: ℎ𝑡𝑡 = 𝜙𝜙ℎ𝑡𝑡−1 + 𝜎𝜎ℎ𝜀𝜀ℎ,𝑡𝑡

Where 𝑟𝑟𝑡𝑡 denotes the logarithmic return in period 𝑡𝑡 and ℎ𝑡𝑡 the logarithmic variance, while 𝜀𝜀𝑟𝑟,𝑡𝑡 and
𝜀𝜀ℎ,𝑡𝑡 are their error terms whose distribu�on defines the four possible model specifica�ons:

• SV model  Error terms 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑁𝑁(0,1) and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) are uncorrelated.
• ASV model  Error terms 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑁𝑁(0,1) and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) are correlated with correla�on 𝜌𝜌.
• SV-sg model  Error terms 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑆𝑆𝑆𝑆(0,1,𝛼𝛼) and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) are uncorrelated.
• SV-t model  Error terms 𝜀𝜀𝑟𝑟,𝑡𝑡~𝑇𝑇(0,1, 𝜈𝜈) and 𝜀𝜀ℎ,𝑡𝑡~𝑁𝑁(0,1) are uncorrelated.

The design of the test is the same as in the previous sec�on. As a representa�ve of the DNN approach
we again use the CNN[3x20,2x20] specifica�on. Se�ngs of the MLE are kept at their default values.

The parameter combina�ons are drawn from the following distribu�ons:

• 𝜎𝜎𝑟𝑟 ~ 𝑈𝑈(0.005,0.045) (long-term vola�lity of returns) (sigma_y)
• 𝜙𝜙 ~ 𝑈𝑈(0.90,0.995) (log-variance AR(1) parameter) (phi)
• 𝜎𝜎ℎ ~ 𝑈𝑈(0.05,0.50) (vola�lity of the log-variance) (sigma_h)
• 𝜌𝜌 ~ 𝑈𝑈(−0.9,0.9) (correla�on between log-variance and returns) (rho)
• 𝛼𝛼 ~ 𝑈𝑈(−5,5) (skew par. of the skew-Gaussian distribu�on) (alpha)
• 𝜈𝜈 ~ 𝑈𝑈(3,10) (degrees of freedom of the t-distribu�on) (nu)

The results of the simula�on test are shown in Table 5. The out-sample R-Squared values for all
parameters and models are shown in Panel A, the miss-convergence rates based on the two standard

12

devia�on criterion are shown in Panel B, and the corrected R-Squared values on a subset of
simula�ons for which both methods converged are shown in Panel C.

Table 5 – stochvolTMB models – Simula�on test results (out-sample R2)
The table summarizes the performance of our 1D-CNN es�ma�on approach in comparison with the MLE
method implemented in the R package stochvolTMB for four SV model variants: SV, ASV, SV-sg and SV-t. Panel A
shows the out-sample R-Squared of parameter es�mates 𝜽𝜽 = {𝜎𝜎𝑟𝑟 ,𝜙𝜙,𝜎𝜎ℎ ,𝜌𝜌,𝛼𝛼, 𝜈𝜈} computed alterna�vely with
the CNN[3x20,2x20] method or with MLE method on a simulated dataset of 𝑁𝑁𝑂𝑂𝑂𝑂𝑡𝑡 = 500 parameter
combina�ons and return �me-series of length 𝑇𝑇 = 2000. Panel B shows the number of simula�ons for which
each of the two methods miss-converged in sense that the model es�mate of a given parameter is more than
two sample standard devia�ons aways from the actual value. Panel C shows the corrected R-Squared for each
model specifica�on once the simula�ons on which any of the two es�ma�on methods miss-converged (for any
of the parameters) are removed from the dataset. This results in 𝑁𝑁𝑆𝑆𝑆𝑆 = 462, 𝑁𝑁𝐴𝐴𝑆𝑆𝑆𝑆 = 472, 𝑁𝑁𝑆𝑆𝑆𝑆−𝑠𝑠𝑠𝑠 = 464 and
𝑁𝑁𝑆𝑆𝑆𝑆−𝑡𝑡 = 439 observa�ons for the SV, ASV, SV-sg and SV-t models respec�vely.

We can see from Panel A that the 1D-CNN outperforms the MLE algorithms from the package
stochvolTMB for all tested models and parameters, although the results are rela�vely close, except
for 𝜙𝜙 and 𝜈𝜈. Panel B shows that the miss-convergence rates for MLE are far lower than for the MCMC
from sec�on 3.3., but s�ll much higher than for the 1D-CNN which miss-converged in only one
simula�on for the SV-t model parameter 𝜙𝜙. The MLE, on the other hand, miss-converged for 24-37

Model Model sigma_r phi sigma_h rho alpha nu
CNN[3x20,2x20] 0.9353 0.7648 0.9234
MLE 0.9067 -5.3048 0.8995
CNN[3x20,2x20] 0.9379 0.7891 0.9505 0.9634
MLE 0.9178 0.1854 0.9354 0.8306
CNN[3x20,2x20] 0.9370 0.7511 0.9274 0.9689
MLE 0.8974 -29.0248 0.7841 0.7815
CNN[3x20,2x20] 0.9386 0.7080 0.9160 0.5175
MLE 0.8520 -3.5683 0.7643 -8.44E+09

Model Model sigma_r phi sigma_h rho alpha nu
CNN[3x20,2x20] 0 0 0
MLE 1 37 1
CNN[3x20,2x20] 0 0 0 0
MLE 2 24 0 9
CNN[3x20,2x20] 0 0 0 0
MLE 3 33 8 1
CNN[3x20,2x20] 0 1 0 0
MLE 3 34 2 27

Model Model sigma_r phi sigma_h rho alpha nu
CNN[3x20,2x20] 0.9312 0.7763 0.9149
MLE 0.9086 0.6587 0.9366
CNN[3x20,2x20] 0.9340 0.8050 0.9460 0.9685
MLE 0.9365 0.7406 0.9505 0.9684
CNN[3x20,2x20] 0.9421 0.7666 0.9231 0.9691
MLE 0.9366 0.6626 0.9422 0.8182
CNN[3x20,2x20] 0.9361 0.7254 0.9084 0.4861
MLE 0.9011 0.6069 0.9007 0.6012

Panel A: Out-sample R-squared on 500 simulated parameter combinations

Panel B: Miss-convergence rates on 500 simulated parameter combinations

Panel C: Out-sample R-squared on parameter combinations where both methods converged

SV-sg

SV-t

SV

ASV

SV-sg

SV-t

SV

ASV

SV-sg

SV-t

SV

ASV

13

simula�ons (depending on model specifica�on) for parameter 𝜙𝜙 and for 27 simula�ons for the SV-t
parameter 𝜈𝜈. Finally, Panel C shows that once all miss-converging cases are removed, the gap
between 1D-CNN and MLE performance further narrows, but with 1D-CNN s�ll leading in most of the
tests. This is especially apparent for the parameter 𝜙𝜙. MLE, on the other hand, achieved slightly
higher accuracy for parameter 𝜎𝜎𝑟𝑟 in the ASV model, parameter 𝜎𝜎ℎ in the SV and SV-g models, and
parameter 𝜈𝜈 for the SV-t model. The difference for 𝜈𝜈 is the most pronounced. We have examined this
issue and it seems that the results for 𝜈𝜈 are rela�vely vola�le with the CNN[3x20,2x20] performance
being an outlier. Our empirical tests with other CNN specifica�ons show that the CNN outperform
MLE for 𝜈𝜈 on average.

4. Conclusion
In the study we have shown how deep neural networks (DNN) can be used as a generic method for an
accurate and robust es�ma�on of Stochas�c-Vola�lity Jump-Diffusion (SVJD) models on historical
data. 1-Dimensional Convolu�onal Neural Networks (1D-CNN) were used to accomplish this task. The
accuracy and robustness of the proposed method was verified on a range of simula�on tests that
compared the 1D-CNN performance with a similar method based on the Mul�layer Perceptron (MLP)
neural networks and fine-tuned set of generalized moments, as well as with standard sta�s�cal
approaches based on MCMC and MLE, including their efficient implementa�ons from the R packages
stochvol and stochvolTMB. The analysis included our workhorse SVJD model as well as other SV
model variants including ones with asymmetry and non-Gaussian errors. In all of the tests 1D-CNN
achieved the highest performance for almost all of the model parameters, while suffering from
significantly lower miss-convergence rates than the MCMC and MLE approaches.

Among the main benefits of the DNN approach is that it is fully generic, allowing for the es�ma�on of
any type of SV/SVJD model as long as simula�ons from the model can be drawn. This is in stark
contrast with MCMC which typically requires major modifica�ons and fine-tuning for each SV/SVJD
model for which it is applied. It also sets the DNN approach apart from the MLP based methods as
while the DNN can be applied directly to the asset return �me series, MLP requires the conversion of
the return �me series into a set of generalized moments (features) which are model-specific and may
need to be fine-tuned for each SV/SVJD model variant.

Compared with MLE/MCMC the DNN may also have a speed advantage in situa�ons where the same
SV/SVJD model needs to be re-es�mated mul�ple �mes (e.g. on different �me periods or �me series),
as the re-es�ma�on of the SV/SVJD in such a case is nearly instantaneous.

Among the main weaknesses of the proposed DNN approach is that it produces only point es�mates
of the model parameters without addi�onal diagnos�cs or confidence intervals. MCMC, on the other
hand, provides their full posterior distribu�ons of the parameters. In situa�ons where addi�onal
diagnos�cs or the full posteriors are needed the DNN thus cannot replace the MCMC.

Finally, while the proposed DNN approach based on 1D-CNN solves the SV/SVJD model es�ma�on
problem, it s�ll does not solve the problem of latent states filtering, which is needed to apply the
model on out-sample datasets and generate forecasts. The DNN based model es�ma�on procedure
would therefore need to be supplemented with a par�cle filter in order to solve the filtering problem
based on the es�mated values of the model parameters. As such filters can usually be rela�vely
quickly designed, the DNN s�ll provide a highly generic solu�on to the SV/SVJD model inference
problem. Alterna�vely, other type of DNN model (such as the LSTM networks) may be used to solve
the filtering problem as well, which can be an interes�ng area of future research.

14

References
Andersen, T. G., Benzoni, L., Lund, J. (2002). "An Empirical Inves�ga�on of Con�nuous-Time Equity
Return Models". Journal of Finance, 57(3): 1239-1284

Andersen, T. G., Bollerslev, T. (1998). "Answering the scep�cs: yes standard vola�lity models do
provide accurate forecasts". International Economic Review, 39 (4): 885–905

Andersen, T. G., Chung, H.J., Sorensen, B.E. (1999). “Efficient method of moments es�ma�on of a
stochas�c vola�lity model: A Monte Carlo study”. Journal of Econometrics, 91(1), 61-87

Andersen, T. G., Sorensen, B.E. (1996). “GMM Es�ma�on of a Stochas�c Vola�lity Model: A Monte
Carlo Study”. Journal of Business & Economic Statistics, 14(3), 328-352

Andrieu C., Doucet, A., Holenstein, R. (2010). “Par�cle Markov Chain Monte Carlo Methods”. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 72(3), 269–342

Bates, D.S. (1996). "Jumps and Stochas�c Vola�lity: Exchange Rate Processes Implicit in Deutsche
Mark Op�ons". The Review of Financial Studies, 9(1), 69–107

Bégin, J.F., Boudreault, M. (2021). “Likelihood Evalua�on of Jump-Diffusion Models Using
Determinis�c Nonlinear Filters”. Journal of Computational and Graphical Statistics, 30(2), 452-466

Bollerslev, T. (1986). "Generalized Autoregressive Condi�onal Heteroskedas�city". Journal of
Econometrics, 31 (3), 307–327

Bos, C.S. (2012). “Rela�ng Stochas�c Vola�lity Es�ma�on Methods.” In L Bauwens, C Hafner, S
Laurent (eds.), Handbook of Volatility Models and Their Applications, John Wiley & Sons, 147–174

Breidt, F. J., Crato, N., de Lima, P. (1998). “The detec�on and es�ma�on of long memory in stochas�c
vola�lity”. Journal of Econometrics, 83(1-2), 325-348

Büchel, P., Kratochwil, M., Nagl, M., Rösch, D. (2022). “Deep calibra�on of financial models: turning
theory into prac�ce”. Review of Derivatives Research, 25(2), 109-136

Cao, J., Chen, J., Hull, J., Poulos, Z. (2022). “Deep Learning for Exo�c Op�on Valua�on“. The Journal of
Financial Data Science, 4(1), 41-53

Carvalho, C.M., Johannes, M.S., Lopes, H.F., Polson, N.G. (2010). "Par�cle Learning and Smoothing."
Statistical Science, 25(1), 88-106

Chopin, N., Jacob, P. E., Papaspiliopoulos, O. (2013). “SMC2: an efficient algorithm for sequen�al
analysis of state space models”. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 75(3), 397-426

Eraker, B., Johannes, M., Polson, N. G. (2003). "The Impact of Jumps in Vola�lity and Returns". The
Journal of Finance, 58 (3): 1269-1300

Friedman, M., Harris, L. (1998). "A Maximum Likelihood Approach for Non-Gaussian Stochas�c
Vola�lity Models" Journal of Business & Economic Statistics, 16(3), 284-291

Fulop, A., Li, J. (2013). “Efficient learning via simula�on: A marginalized resample-move approach”,
Journal of Econometrics, 176(2), 146-161

Ghysels, E., Harvey, A. and Renault, E. (1996) “Stochas�c Vola�lity”. In: Maddala, G.S. and Rao, C.R.,
Eds., Handbook of Statistics (14) Statistical Methods in Finance, Elsevier, Amsterdam, 119-191

15

Harvey, A.C., Ruiz, E., Shephard, N. (1994). “Mul�variate Stochas�c Variance Models”. The Review of
Economic Studies, 61(2), 247–264

Harvey, A. C., Shephard, N. (1996). “Es�ma�on of an Asymmetric Stochas�c Vola�lity Model for Asset
Returns.” Journal of Business & Economic Statistics, 14(4), 429–434

Harvey, A. C., (1998). “Long Memory in Stochas�c Vola�lity“, in eds. J. Knight and S. Satchell,
Forecasting Volatility in Financial Markets, 307-320, Oxford: Buterworth-Heineman.

Hernandez, A. (2017). “Model calibra�on with neural networks“. Risk.

Heston, S.L. (1993). "A Closed-Form Solu�on for Op�ons with Stochas�c Vola�lity with Applica�ons to
Bond and Currency Op�ons ". The Review of Financial Studies, 6(2), 327–343

Horvath, B., Muguruza, A., Tomas, M. (2021). "Deep learning vola�lity: a deep neural network
perspec�ve on pricing and calibra�on in (rough) vola�lity models". Quantitative Finance, 21(1), 11–27

Hosszejni, D., Kastner, G. (2019). “Approaches Toward the Bayesian Es�ma�on of the Stochas�c
Vola�lity Model with Leverage”. In: Argiento, R., Durante, D., Wade, S. (eds) Bayesian Statistics and
New Generations. BAYSM 2018. Springer Proceedings in Mathema�cs & Sta�s�cs, 296

Hosszejni, D., Kastner, G. (2021). “Modeling Univariate and Mul�variate Stochas�c Vola�lity in R with
stochvol and factorstochvol”. Journal of Statistical Software, 100(12), 1–34

Hosszejni, D., Kastner, G. (2023). “stochvol: Efficient Bayesian Inference for Stochas�c Vola�lity (SV)
Models“, CRAN R package, version 3.2.1

Jacquier, E., Polson, N. G., Rossi, P.E. (1994). “Bayesian Analysis of Stochas�c Vola�lity Models.”
Journal of Business & Economic Statistics, 20(1), 69–87

Jacquier, E., Polson, N. G., Rossi, P. E. (2004). “Bayesian Analysis of Stochas�c Vola�lity Models with
Fat-Tails and Correlated Errors”. Journal of Econometrics, 122, 185-212

Kastner, G., Frühwirth-Schnater, S. (2014). “Ancillarity-sufficiency interweaving strategy (ASIS) for
boos�ng MCMC es�ma�on of stochas�c vola�lity models”. Computational Statistics & Data Analysis,
76, 408-423

Kastner, G. (2016). “Dealing with Stochas�c Vola�lity in Time Series Using the R Package stochvol”.
Journal of Statistical Software, 69(5), 1–30

Kim, S., Shephard, N., Chib, S. (1998). “Stochas�c Vola�lity: Likelihood Inference and Comparison with
ARCH Models.” The Review of Economic Studies, 65(3), 361–393

Kim, Y.S., Kim, H., Choi, J. (2023). “Deep Calibra�on with Ar�ficial Neural Network: A Performance
Comparison on Op�on-Pricing Models“. The Journal of Financial Data Science, 5(4), 100-118

LeCun, Y., Bengio, Y., Hinton, G. (2015). “Deep learning”. Nature, 521, 436–444

Li, H., Wells, M.T., Yu, C.L. (2008). “A Bayesian Analysis of Return Dynamics with Lévy Jumps”. The
Review of Financial Studies, 21(5), 2345–2378

Liesenfeld, R., Richard, J.F. (2003). “Univariate and mul�variate stochas�c vola�lity models:
es�ma�on and diagnos�cs”, Journal of Empirical Finance, 10(4), 505-531

16

Liu, J., West, M. (2001). “Combined parameters and state es�ma�on in simula�on-based filtering“.
Sequential Monte Carlo Methods in Practice (A.Doucet, N. de Freitas and N. Gordon, eds.), Springer,
New York, 197-223

Liu, S., Borovykh, A., Grzelak, L.A., Oosterlee, C.W. (2019). “A neural network-based framework for
financial model calibra�on”. Journal of Mathematics in Industry. 9(9)

A neural network-based framework for financial model calibra�on Shuaiqiang Liu, Anastasia
Borovykh, Lech A. Grzelak & Cornelis W. Oosterlee Journal of Mathema�cs in Industry volume 9,
Ar�cle number: 9 (2019)

Omori, Y., Chib, S., Shephard N., Nakajima, J. (2007). “Stochas�c Vola�lity with Leverage: Fast and
Efficient Likelihood Inference”. Journal of Econometrics, 140(2), 425–449

Omori, Y., Hashimoto, R. (2022). “ASV: Stochas�c Vola�lity Models with or without Leverage”, CRAN R
package, version 1.1.1

Mahjoubi, L.A., Bégin, J.F., Boudreault, M. (2023). “SVDNF: Discrete Nonlinear Filtering for Stochas�c
Vola�lity Models”, CRAN R package, version 0.1.8

Nakajima J, Omori Y (2012). “Stochas�c Vola�lity Model with Leverage and Asymmetrically Heavy-
Tailed Error Using GH Skew Student’s t Distribu�on.” Computational Statistics & Data Analysis, 56(11),
3690–3704

Sandmann, G., Koopman, S.J. (1998). “Es�ma�on of stochas�c vola�lity models via Monte Carlo
maximum likelihood“. Journal of Econometrics, 87(2), 271-301

So, M.E.C.P., Lam., K., Li, W.K. (1998). “A Stochas�c Vola�lity Model With Markov Switching”, Journal
of Business & Economics Statistics, 16(2), 244-253

Skaug, H.J., Yu, J. (2014). “A flexible and automated likelihood based framework for inference in
stochas�c vola�lity models”, Computational Statistics & Data Analysis, 76, 642-654

Taylor, S.J. (1982) “Financial Returns Modelled by the Product of Two Stochas�c Processes—A Study
of Daily Sugar Prices 1961-79”. In: Anderson, O.D., Ed., Time Series Analysis: Theory and Practice 1,
North-Holland, Amsterdam, 203-226

Wahl, J.C. (2021). “stochvolTMB: Likelihood Es�ma�on of Stochas�c Vola�lity Models“, CRAN R
package, version 0.2.0

Watanabe, T. (1999). “A non-linear filtering approach to stochas�c vola�lity models with an
applica�on to daily stock returns”. Journal of Applied Econometrics, 14(2), 101–121

Witzany, J., Fičura, M. (2023a). “Machine Learning Applica�ons for the Valua�on of Op�ons on Non-
Liquid Op�on Markets”, SSRN working paper, htp://dx.doi.org/10.2139/ssrn.4370426

Witzany, J., Fičura, M. (2023b). “A Comparison of Neural Networks and Bayesian Approaches for the
Heston Model Es�ma�on (Forget Sta�s�cs – Machine Learning is Sufficient!)”, SSRN working paper,
htp://dx.doi.org/10.2139/ssrn.4593078

17

Appendix A – MCMC es�ma�on of the SVJD model
MCMC is used as a benchmark method to es�mate the model described in equa�ons (1) and (2).

Our MCMC algorithm proceeds as follows:

0. Ini�al values of the model parameters were set to: 𝜇𝜇(0) = 0, 𝛼𝛼(0) = ln[var(𝒓𝒓)] ∗ (1 − 0.9),
𝛽𝛽(0) = 0.9, 𝛾𝛾(0) = 0.3, 𝜇𝜇𝐽𝐽

(0) = 0, 𝜎𝜎𝐽𝐽
(0) = 2 ∗ var(𝒓𝒓), 𝜆𝜆(0) = 0.05. The ini�al values of the

stochas�c variances 𝑽𝑽(0) were set equal to the exponen�al moving average of 𝒓𝒓2 with decay
of 0.99, and the ini�al jump sizes 𝑱𝑱(0) and jump occurrences 𝒁𝒁(0) were set to zero.

1. For 𝑖𝑖 = 1, … ,𝑇𝑇 sample jump sizes with 𝐽𝐽𝑖𝑖
(𝑠𝑠) ∝ 𝜑𝜑 �𝐽𝐽; 𝜇𝜇𝐽𝐽

(𝑠𝑠−1),𝜎𝜎𝐽𝐽
(𝑠𝑠−1)� if 𝑍𝑍𝑖𝑖

(𝑠𝑠−1) = 0 or with

𝐽𝐽𝑖𝑖
(𝑠𝑠) ∝ 𝜑𝜑 �𝑟𝑟𝑖𝑖;𝜇𝜇(𝑠𝑠−1) + 𝐽𝐽,�𝑉𝑉𝑖𝑖

(𝑠𝑠−1)�𝜑𝜑 �𝐽𝐽; 𝜇𝜇𝐽𝐽
(𝑠𝑠−1),𝜎𝜎𝐽𝐽

(𝑠𝑠−1)� if 𝑍𝑍𝑖𝑖
(𝑠𝑠−1) = 1.

2. For 𝑖𝑖 = 1, … ,𝑇𝑇 sample 𝑍𝑍𝑖𝑖
(𝑠𝑠) ∈ {0,1}, with Pr[𝑍𝑍 = 1] = 𝑝𝑝1/(𝑝𝑝0 + 𝑝𝑝1), where:

𝑝𝑝0 = 𝜑𝜑�𝑟𝑟𝑖𝑖;𝜇𝜇(𝑠𝑠−1),�𝑉𝑉𝑖𝑖
(𝑠𝑠−1)� �1 − 𝜆𝜆(𝑠𝑠−1)� and 𝑝𝑝1 = 𝜑𝜑�𝑟𝑟𝑖𝑖;𝜇𝜇(𝑠𝑠−1) + 𝐽𝐽,�𝑉𝑉𝑖𝑖

(𝑠𝑠−1)�𝜆𝜆(𝑠𝑠−1).

3. Sample new stochas�c log-variances ℎ𝑖𝑖
(𝑠𝑠) = log �𝑉𝑉𝑖𝑖

(𝑠𝑠)� for 𝑖𝑖 = 1, … ,𝑇𝑇 with the accept-reject

Gibbs sampler (Kim, Shephard and Chib, 1998), by calcula�ng 𝑦𝑦𝑖𝑖 = 𝑟𝑟𝑖𝑖 − 𝜇𝜇(𝑠𝑠−1) − 𝐽𝐽𝑖𝑖
(𝑠𝑠)𝑍𝑍𝑖𝑖

(𝑠𝑠)

and sampling proposal ℎ𝑖𝑖
(𝑠𝑠) from 𝜑𝜑(ℎ𝑖𝑖;𝜇𝜇𝑖𝑖 ,𝜎𝜎), where: 𝜇𝜇𝑖𝑖 = 𝜙𝜙𝑖𝑖 + 𝜎𝜎2

2
�𝑦𝑦𝑖𝑖2 exp(−𝜙𝜙𝑖𝑖) − 1�,

𝜙𝜙𝑖𝑖 = [𝛼𝛼(1−𝛽𝛽)+𝛽𝛽(log𝑆𝑆𝑖𝑖+1+log𝑆𝑆𝑖𝑖−1)]
(1+𝛽𝛽2) and 𝜎𝜎 = 𝛾𝛾

�1+𝛽𝛽2
. Proposal ℎ𝑖𝑖

(𝑠𝑠) is accepted with probability

𝑓𝑓∗ 𝑔𝑔∗⁄ , where ln𝑓𝑓∗ = −ℎ𝑖𝑖
2
− 𝑦𝑦𝑖𝑖2

2
[exp (−ℎ𝑖𝑖)] and ln𝑔𝑔∗ = −ℎ𝑖𝑖

2
− 𝑦𝑦𝑖𝑖2

2
[exp(−𝜙𝜙𝑖𝑖) (1 + 𝜙𝜙𝑖𝑖) −

ℎ𝑖𝑖 exp(−𝜙𝜙𝑖𝑖)]. If not accepted, a new proposal is drawn (un�l acceptance).
4. Sample new stochas�c vola�lity autoregression coefficients 𝛼𝛼(𝑠𝑠),𝛽𝛽(𝑠𝑠),𝛾𝛾(𝑠𝑠) from ℎ𝑖𝑖 =

log �𝑉𝑉𝑖𝑖
(𝑠𝑠)� for 𝑖𝑖 = 1, … ,𝑇𝑇 using the Bayesian linear regression model:

𝜷𝜷� = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿𝑿𝑿, and 𝒆𝒆� = 𝑿𝑿 − 𝑿𝑿𝜷𝜷�, where 𝑿𝑿 = � 1 … 1
ℎ1 …ℎ𝐿𝐿−1

�
′
 and 𝑿𝑿 = (ℎ2 …ℎ𝐿𝐿)′.

Sampling �𝛾𝛾(𝑠𝑠)�2 ∝ 𝐼𝐼𝑆𝑆 �𝑛𝑛−2
2

, 𝒆𝒆�
′𝒆𝒆�
2
� and �𝛼𝛼(𝑠𝑠),𝛽𝛽(𝑠𝑠)�′ ∝ 𝜑𝜑 �(𝛼𝛼,𝛽𝛽)′;𝜷𝜷�, �𝛾𝛾(𝑠𝑠)�2(𝑿𝑿′𝑿𝑿)−1�.

5. Sample 𝜇𝜇(𝑠𝑠) based on the normally distributed �me series 𝑟𝑟𝑖𝑖 − 𝐽𝐽𝑖𝑖
(𝑠𝑠)𝑍𝑍𝑖𝑖

(𝑠𝑠) with variances 𝑉𝑉𝑖𝑖
(𝑠𝑠):

𝑝𝑝�𝜇𝜇(𝑠𝑠)|𝒓𝒓, 𝑱𝑱(𝑠𝑠),𝒁𝒁(𝑠𝑠),𝑽𝑽(𝑠𝑠)� ∝ 𝜑𝜑�𝜇𝜇;�
𝑟𝑟𝑖𝑖 − 𝐽𝐽𝑖𝑖

(𝑠𝑠)𝑍𝑍𝑖𝑖
(𝑠𝑠)

𝑉𝑉𝑖𝑖
(𝑠𝑠)

𝐿𝐿

𝑖𝑖=1

�
1

𝑉𝑉𝑖𝑖
(𝑠𝑠)

𝐿𝐿

𝑖𝑖=1

� ,�
1

𝑉𝑉𝑖𝑖
(𝑠𝑠)

𝐿𝐿

𝑖𝑖=1

�.

6. Sample 𝜆𝜆(𝑠𝑠) from 𝑝𝑝�𝜆𝜆(𝑠𝑠)|𝑱𝑱(𝑠𝑠)� ∝ Beta �𝜆𝜆;𝐵𝐵𝐽𝐽
(𝑠𝑠) + 1,𝑇𝑇 − 𝐵𝐵𝐽𝐽

(𝑠𝑠) + 1� where 𝐵𝐵𝐽𝐽
(𝑠𝑠) denotes the

number of realized jumps 𝐵𝐵𝐽𝐽
(𝑠𝑠) = ∑ 𝐽𝐽𝑖𝑖

(𝑠𝑠)𝐿𝐿
𝑖𝑖=1 .

7. Sample 𝜇𝜇𝐽𝐽
(𝑠𝑠),𝜎𝜎𝐽𝐽

(𝑠𝑠) based on the normally distributed series 𝑱𝑱(𝑠𝑠) and uninforma�ve priors
𝑝𝑝(𝜇𝜇) ∝ 1 and 𝑝𝑝(log𝜎𝜎2) ∝ 1, equivalent to 𝑝𝑝(𝜎𝜎2) ∝ 1/𝜎𝜎2), from:

𝑝𝑝 �𝜇𝜇𝐽𝐽
(𝑠𝑠)|𝑱𝑱(𝑠𝑠),𝜎𝜎𝐽𝐽

(𝑠𝑠−1)� ∝ 𝜑𝜑�𝜇𝜇𝐽𝐽
(𝑠𝑠);

∑ 𝐽𝐽𝑖𝑖
(𝑠𝑠)𝐿𝐿

𝑖𝑖=1
𝑇𝑇

,
𝜎𝜎𝐽𝐽

(𝑠𝑠−1)

√𝑇𝑇
�,

𝑝𝑝 ��𝜎𝜎𝐽𝐽
(𝑠𝑠)�

2
|𝑱𝑱(𝑠𝑠),𝜇𝜇𝐽𝐽

(𝑠𝑠)� ∝ 𝐼𝐼𝑆𝑆 ��𝜎𝜎𝐽𝐽
(𝑠𝑠)�

2
;
𝑇𝑇
2

,
∑ �𝐽𝐽𝑖𝑖

(𝑠𝑠) − 𝜇𝜇𝐽𝐽
(𝑠𝑠)�

2𝐿𝐿
𝑖𝑖=1

2 �.

18

Appendix B – Generalized moments used in the MLP approach
To es�mate the SVJD model described in equa�ons (1) and (2) with the MLP approach from sec�on
2.2, we had to transform the �me-series of returns 𝒓𝒓 into a vector of generalized moments 𝑴𝑴 on
which the MLP neural network 𝜽𝜽 = 𝑓𝑓(𝑴𝑴) could be trained. The generalized moments were chosen
expertly based on proxies of vola�lity, vola�lity persistence and jumps in financial �me series.

The generalized moments used in the empirical study (sec�on 3.1. and 3.2.) are as follows:

1. Mean return: 𝑀𝑀 = mean(𝒓𝒓)
2. Variance of returns: 𝑉𝑉 = var(𝒓𝒓)
3. Skewness of returns: 𝑆𝑆𝑆𝑆 = skew(𝒓𝒓)
4. Kurtosis of returns: 𝑆𝑆𝑆𝑆 = kurt(𝒓𝒓)
5. Realized variance: 𝑅𝑅𝑉𝑉 = mean(𝒓𝒓2)
6. Absolute varia�on: 𝐴𝐴𝑉𝑉 = mean(|𝒓𝒓|)
7. Bi-power varia�on: 𝐵𝐵𝑉𝑉 = mean��𝒓𝒓1,…,𝐿𝐿−1� ∗ �𝒓𝒓2,…,𝐿𝐿��
8. Ra�o of BV to RV: 𝐵𝐵𝑉𝑉𝑅𝑅𝑉𝑉 = 𝐵𝐵𝑉𝑉/𝑅𝑅𝑉𝑉
9. Realized Signed Jumps: 𝑅𝑅𝑆𝑆𝐽𝐽 = [sum(𝒓𝒓+2)− sum(𝒓𝒓−2)]/sum(𝒓𝒓2)
10. Mean squared to abs. varia�on: 𝑅𝑅𝑉𝑉𝐴𝐴𝑉𝑉 = �𝑅𝑅𝑉𝑉1/2 − 𝐴𝐴𝑉𝑉�/𝑅𝑅𝑉𝑉1/2
11. Squared return autocorrela�on (lag 1): 𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠,1 = acf(𝒓𝒓2, 1)
12. Avg. sq. return autocorrela�on (lag 1-5): 𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠,1,5 = mean[acf(𝒓𝒓2, 1), … , acf(𝒓𝒓2, 5)]
13. Avg. sq. return autocorrela�on (lag 1-23): 𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠,1,23 = mean[acf(𝒓𝒓2, 1), … , acf(𝒓𝒓2, 23)]
14. Avg. sq. return autocorrela�on (lag 1-67): 𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠,1,67 = mean[acf(𝒓𝒓2, 1), … , acf(𝒓𝒓2, 67)]
15. Avg. sq. return autocorrela�on (lag 1-252): 𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠,1,252 = mean[acf(𝒓𝒓2, 1), … , acf(𝒓𝒓2, 23)]
16. Squared return autocorrela�on (lag 1): 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑠𝑠,1 = acf(|𝒓𝒓|, 1)
17. Avg. sq. return autocorrela�on (lag 1-5): 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑠𝑠,1,5 = mean[acf(|𝒓𝒓|, 1), … , acf(|𝒓𝒓|, 5)]
18. Avg. sq. return autocorrela�on (lag 1-23): 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑠𝑠,1,23 = mean[acf(|𝒓𝒓|, 1), … , acf(|𝒓𝒓|, 23)]
19. Avg. sq. return autocorrela�on (lag 1-67): 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑠𝑠,1,67 = mean[acf(|𝒓𝒓|, 1), … , acf(|𝒓𝒓|, 67)]
20. Avg. sq. return autocorrela�on (lag 1-252): 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎𝑠𝑠,1,252 = mean[acf(|𝒓𝒓|, 1), … , acf(|𝒓𝒓|, 252)]

Where 𝒓𝒓+2 denotes a vector of all posi�ve returns and 𝒓𝒓−2 a vector of all nega�ve returns.

Before being used as feature in the MLP neural network, each of the generalized moments was
normalized with 𝒙𝒙∗ = (𝒙𝒙 −𝑚𝑚𝒙𝒙)/𝑠𝑠𝒙𝒙 where 𝒙𝒙 denotes the raw feature, 𝒙𝒙∗ the normalized feature, and
the normaliza�on parameters 𝑚𝑚𝒙𝒙 = mean(𝒙𝒙) and 𝑠𝑠𝒙𝒙 = �var(𝒙𝒙) es�mated on the training dataset of
size 𝑁𝑁 = 50 000. The same opera�ons were applied also to each value of the target vector 𝜽𝜽.

The normalized moments (features) were used as input into the MLP neural network implemented
with the Matlab func�on feedforwardnet. Training was performed with the func�on train using the
Levenberg-Marquardt algorithm with default values of its se�ngs.

19

Appendix C – 1D-CNN architecture
Four 1D Convolu�onal Neural Network (D-CNN) variants are tested, alterna�vely with 3 or 4
convolu�onal layers followed by 2 or 3 fully connected layers, each one alterna�vely with 20 or 30
filters/neurons. In the result tables we denote these networks as CNN[3x20,2x20], CNN[3x30,2x30],
CNN[4x20,3x20] and CNN[4x30,3x30], with the values in [] brackets deno�ng the number of
convolu�onal layers x filters followed by the number of fully connected layers x neurons.

For all tested networks the filter and pooling width are set to 5 and a stride equal to 5 is applied in all
pooling layers except the first one. Average pooling is used and the Leaky ReLu ac�va�on func�on is
used in the convolu�onal and fully connected layers. The choice on the pooling width and the stride
is a result of early tes�ng which showed that pooling with stride improves the learning of the SVJD
autoregressive parameter, but applica�on of stride in all pooling layers worsens the performance with
respect to the vola�lity of variance parameter and the jump-process parameters. Combined approach
where stride is applied to all pooling layers except the first one achieved the most balanced results.

The CNN[3x20,2x20] network was ini�alized as follows:

% Set CNN parameters
numFeatures = 1; % Number of time series used as input
numResponses = size(YN,2); % Number of parameters of the SVJD model
filterSize = 5; % Width of the 1D convolutional filters
poolSize = 5; % Witdh of the 1D pooling operation
numFilters = 20; % Number of 1D convolutional filters
numNeurons = 20; % Number of neurons in fully-connected layers

% Construct 3x2 CNN architecture
layers = [...
 sequenceInputLayer(numFeatures,MinLength=poolSize*filterSize)
 convolution1dLayer(filterSize,numFilters,Padding="causal")
 leakyReluLayer
 layerNormalizationLayer
 averagePooling1dLayer(poolSize)
 convolution1dLayer(filterSize,numFilters,Padding="causal")
 leakyReluLayer
 layerNormalizationLayer
 averagePooling1dLayer(poolSize,stride=poolSize)
 convolution1dLayer(filterSize,numFilters,Padding="causal")
 leakyReluLayer
 layerNormalizationLayer
 globalAveragePooling1dLayer
 fullyConnectedLayer(numNeurons)
 leakyReluLayer
 layerNormalizationLayer
 fullyConnectedLayer(numNeurons)
 leakyReluLayer
 layerNormalizationLayer
 fullyConnectedLayer(numResponses)
 regressionLayer];

The CNN[3x30,2x30] architecture is iden�cal to the CNN[3x20,2x20] but with:

numFilters = 30; % Number of 1D convolutional filters
numNeurons = 30; % Number of neurons in fully-connected layers

The architectures of CNN[4x20,3x20] and CNN[4x30,3x30] differ from the previous ones by adding
one more set of convolu�on and pooling layers before the global average pooling is applied:

20

 convolution1dLayer(filterSize,numFilters,Padding="causal")
 leakyReluLayer
 layerNormalizationLayer

Which is added just before the row with globalAveragePooling1dLayer.

And one more fully connected layer before the final regression layer:

 leakyReluLayer
 layerNormalizationLayer
 fullyConnectedLayer(numResponses)

Which is added just before the row with regressionLayer.

All networks are trained with the Adam algorithm with batch size of 50, layer normaliza�on and early
stopping implemented in Matlab. We further set the maximum number of epochs to 100 and the
early-stopping pa�ence to 50. The maximum number of epochs was not reached in any of the
simula�on tests. Rela�vely high value of the pa�ence was chosen as early tests have shown it tends
to improve the out-sample model performance.

The se�ng of the training algorithm is as follows:

% Specify training options
miniBatchSize = 50; % Mini-batch size
maxEpochs = 100; % Maximum number of training epochs
vPatience = 50; % Early-stopping patience parameter
options = trainingOptions("adam", ...
 MiniBatchSize=miniBatchSize, ...
 MaxEpochs=maxEpochs, ...
 SequencePaddingDirection="left", ...
 ValidationData={XNVal_CNN,YNVal}, ...
 ValidationPatience = vPatience, ...
 Plots="training-progress", ...
 Verbose=0);

% Train network
net = trainNetwork(XNTrain_CNN,YNTrain,layers,options);

Analogically to the MLP networks, normaliza�on of the inputs and outputs of the 1D-CNN was
performed before training.

To normalize the inputs, the 𝑁𝑁 = 50000 training-sample return vectors 𝒓𝒓(𝑖𝑖) were stacked together
into one large return vector 𝑹𝑹 of size 𝑁𝑁 ∗ 𝑇𝑇 . The normaliza�on parameters 𝑚𝑚𝑹𝑹 = mean(𝑹𝑹) and
𝑠𝑠𝑹𝑹 = �var(𝑹𝑹) were then computed and used to normalize the return vectors 𝒓𝒓(𝑖𝑖) on the training as
well as the tes�ng sample with the transforma�on 𝒓𝒓∗ = (𝒓𝒓 −𝑚𝑚𝑹𝑹)/𝑠𝑠𝑹𝑹.

To normalize the outputs 𝜽𝜽(𝑖𝑖) an analogical procedure to the one described in Appending B is applied.
For each parameter 𝑗𝑗, we use the training sample vector of its values 𝜽𝜽𝐴𝐴 of size 𝑁𝑁, to compute the
normaliza�on parameters 𝑚𝑚𝜽𝜽𝑗𝑗 and 𝑠𝑠𝜽𝜽𝑗𝑗, which are then used to perform the normaliza�on on both

the training and the tes�ng sample, 𝜽𝜽𝐴𝐴∗ = �𝜽𝜽𝐴𝐴 − 𝑚𝑚𝜽𝜽𝑗𝑗� /𝑠𝑠𝜽𝜽𝑗𝑗, for all parameters 𝑗𝑗.

IES Working Paper Series

2023
1. Josef Bajzik, Tomáš Havránek, Zuzana Iršová, Jiří Novák: Are Estimates of the

Impact of Shareholder Activism Published Selectively?
2. Klára Kantová: Ex-Prisoners and the Labour Market in the Czech Republic
3. Theodor Petřík, Martin Plajner: Concurrent Business and Distribution Strategy

Planning Using Bayesian Networks
4. Tijmen Tuinsma, Kristof De Witte, Petr Janský, Miroslav Palanský, Vitezslav

Titld: Effects of Corporate Transparency on Tax Avoidance: Evidence from
Country-by-Country Reporting

5. Zuzana Irsova, Pedro R. D. Bom, Tomas Havranek, Heiko Rachinger: Spurious
Precision in Meta-Analysis

6. Vojtěch Mišák: Does Heat Cause Homicides? A Meta-Analysis
7. Fan Yang: The Impact of Regulatory Change on Hedge Fund Performance
8. Boris Fisera: Distributional Effects of Exchange Rate Depreciations: Beggar-

Thy-Neighbour or Beggar-Thyself?
9. Salim Turdaliev: Powering Up Cleaner Choices: A Study on the Heterogenous

Effects of Social Norm-Based Electricity Pricing on Dirty Fuel Purchases
10. Kseniya Bortnikova: Beauty and Productivity in Academic Publishing
11. Vladimír Benáček, Pavol Frič: Ossified Democracy as an Economic Problem

and Policies for Reclaiming its Performance
12. Petr Janský, Miroslav Palanský, Jiří Skuhrovec: Public Procurement and Tax

Havens
13. Katarzyna Bilicka, Evgeniya Dubinina, Petr Janský: Fiscal Consequences of

Corporate Tax Avoidance
14. Evžen Kočenda, Shivendra Rai: Drivers of Private Equity Activity across

Europe: An East-West Comparison
15. Adam Geršl, Barbara Livorová: Does Monetary Policy Reinforce the Effects of

Macroprudential Policy
16. Tersoo David Iorngurum: Method versus cross-country heterogeneity in the

exchange rate pass-through
17. T. D. Stanley, Hristos Doucouliagos, Tomas Havranek: Meta-Analyses of Partial

Correlations Are Biased: Detection and Solutions
18. Samuel Fiifi Eshun, Evžen Kočenda: Determinants of Financial Inclusion in

Africa and OECD Countries
19. Matej Opatrny, Tomas Havranek, Zuzana Irsova, Milan Scasny: Publication

Bias and Model Uncertainty in Measuring the Effect of Class Size on
Achievement

20. Soňa Sivá: Effects of Government Interventions on Bank Performance
21. Oleg Alekseev, Karel Janda, Mathieu Petit, David Zilberman: Impact of Raw

Material Price Volatility on Returns in Electric Vehicles Supply Chain

22. Karel Janda, Barbora Schererova, Jan Sila, David Zilberman: Graph Theory
Approach to Prices Transmission in the Network of Commonly Used Liquid
Fuels

23. Yermone Sargsyan, Salim Turdaliev, Silvester van Koten: The Heterogeneous
Effects of Social Cues on Day Time and Night Time Electricity Usage, and
Appliance Purchase: Evidence from a Field Experiment in Armenia

24. Jan Sila, Evzen Kocenda, Ladislav Kristoufek, Jiri Kukacka: Good vs. Bad
Volatility in Major Cryptocurrencies: The Dichotomy and Drivers of
Connectedness

25. Zuzana Irsova, Hristos Doucouliagos, Tomas Havranek, T. D. Stanley: Meta-
Analysis of Social Science Research: A Practitioner’s Guide

26. Diana Kmetkova, Milan Scasny, Iva Zverinova, Vojtech Maca: Exploring the
Link Between Diet and Sustainability in Europe: A Focus on Meat and Fish
Consumption

27. Fisnik Bajrami: The Impact of Dollarisation on Economic Growth, Investment,
and Trade

28. Miroslav Svoboda, Michael Fanta, Jan Mošovský: Effectiveness of Car
Scrappage Schemes: Comparative Analysis of European Countries

29. Nicolas Fanta, Roman Horvath: Artificial Intelligence and Central Bank
Communication: The Case of the ECB„

30. Karel Janda, Jan Sila, David Zilberman: Fueling Financial Stability: The
Financial Impact of U.S. Renewable Fuel Standard

31. Anna Pavlovova: High-Frequency Groceries Prices: Evidence from Czechia
32. Kumar Chandrakamal Pramod Kumar: Less-cash or more-cash? Determinants

and trends of currency in circulation in a panel of 17 economies
33. Javier Garcia-Bernardo, Petr Janský:Profit Shifting of Multinational

Corporations Worldwide
34. T. D. Stanley, Hristos Doucouliagos, Tomas Havranek: Reducing the Biases of

the Conventional Meta-Analysis of Correlations
35. Daniel Bartušek, Evžen Kočenda: Unraveling Timing Uncertainty of Event-

driven Connectedness among Oil-Based Energy Commodities
36. Milan Fičura, Jiří Witzany: Historical Calibration of SVJD Models with Deep

Learning

All papers can be downloaded at: http://ies.fsv.cuni.cz •

Univerzita Karlova v Praze, Fakulta sociálních věd

Institut ekonomických studií [UK FSV – IES] Praha 1, Opletalova 26
E-mail : ies@fsv.cuni.cz http://ies.fsv.cuni.cz

http://ies.fsv.cuni.cz/
mailto:IES@Mbox.FSV.CUNI.CZ

	wp_2023_36_B
	wp_2023_36_C
	wp_2023_36_D
	1. Introduction
	2. Neural Network estimation of SVJD models
	2.1. SVJD model specification
	2.2. MCMC for SVJD model estimation
	2.3. NN approach to SVJD model estimation
	2.4. DNN approach to SVJD model estimation

	3. Simulation tests
	3.1. SVJD model estimation – Simulation test design
	3.2. SVJD model estimation – Simulation test results
	3.3. SV model estimation – stochvol package
	3.4. SV model estimation – stochvolTMB package

	4. Conclusion
	References
	Appendix A – MCMC estimation of the SVJD model
	Appendix B – Generalized moments used in the MLP approach
	Appendix C – 1D-CNN architecture

	wp_2023_36_E

