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1 Introduction

As Covid-19 disease began to spread rapidly, the lives of populations all around the world

were influenced. Various measures were implemented to slow down the spread of the

contagious disease. Since Covid-19 is transmitted mainly by the droplets spread by an

infected individual, all the interventions were centred around social distancing. Social dis-

tancing can take various forms: stay-at-home orders, restrictions on opening hours, indoor

and/or outdoor gatherings, travelling restrictions, school closures, and more. Neverthe-

less, the most popular measure was ordering populations to wear face masks. Knowing

the true unbiased effect of face masks on Covid-19 transmission is essential not only for

the well-being and health of populations but also for proper policy setting during the

pandemic. Apart from the health-related reasons for the evaluation of the mentioned

effect, we need to consider the economic consequences of the Covid-19 pandemic. As an

outcome of social distancing measures, economic activity experienced a major decline.

According to The World Bank, the world’s GDP annual growth experienced a drop to

−3.1% in 2020. Based on a cost-effectiveness analysis the additional incurred costs as-

sociated with mask-wearing amount to almost 1 billion USD with the additional 1,121

prevented Covid-19 cases per million subjects with 328 quality-adjusted life years gained

(Bagepally et al., 2021). These results are however sensitive to the effectiveness of face

masks in preventing Covid-19. Primary studies report varying estimates both within and

between studies, and their results are often inconclusive. Moreover, no meta-analysis uses

modern methods for the evaluation of publication bias and addressing model uncertainty.

Lastly, the paper’s results are of great importance for future pandemics.

The objective of this paper is to assess the literature published on the effect of face

masks on Covid transmission and perform a quantitative meta-analysis. To do so, we col-

lected 258 estimates from 44 studies, their standard errors, and the variables representing

the differences among the studies. We estimate the true value of the effect corrected for

publication bias. Publication bias is a serious issue present in the majority of published

literature (Stanley, 2005). Since the publication of a paper is often determined by the

statistical significance of its results, the authors engage in the manipulation of sample

sizes and specification of models to achieve significance (Gerber et al., 2008; Rothstein

et al., 2005; Brodeur et al., 2018). To examine whether publication bias is present in

the collected literature on the mentioned effect, we implement several modern statisti-
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cal tests such as the FAT-PET with different specifications (OLS, Fixed effects, Between

effects), and weights. Secondly, we apply a variety of current techniques such as the

Endogenous kink model by Bom & Rachinger (2019), the Stem-based method as sug-

gested by Furukawa (2019), the Selection model as in Andrews & Kasy (2019), and more.

Thirdly, methods allowing for endogeneity such as FAT-PET with instrumental variable,

p-uniform* method as proposed by van Aert & Van Assen (2019) and Caliper tests (Ger-

ber et al., 2008) are employed. Based on the results of performed tests, we conclude that

there is mild evidence for publication bias.

Apart from publication bias detection the majority of enumerated methods can be

used to estimate the effect beyond bias. The significant estimates of risk associated with

face mask-wearing range from −0.187 to −0.440. These values can be interpreted as

follows: Wearing a face mask is associated with a reduced risk of Covid-19 infection by

18.7% to 44%. Such results suggest a significant protective ability against Covid-19. As

a consequent implication in the case of another wave of Covid-19 or a variant resistant

to available vaccines, we recommend face masks be used. This paper also determines

the potential drivers behind the heterogeneity of estimates of the effect of face masks on

Covid-19 transmission. It is not unlikely that the estimated effects of primary studies

vary not only because of the publication bias but also because of different settings of the

studies, methodology and many other factors including the geographical location and the

temperature. Despite several meta-analyses already published on the mentioned effect,

they all contain several drawbacks. Firstly, the meta-analysis by Chu et al. (2020) pub-

lished in the Lancet evaluates the effect of face masks, however, the studies included in

the meta-analysis are focused on various respiratory diseases, not on Covid-19 specifically.

The number of included studies on Covid-19 regarding mask use is as low as four. Includ-

ing other respiratory illnesses in the meta-analysis can be seen in papers by Jefferson et al.

(2023); Liang et al. (2020); Chaabna et al. (2021). Moreover, the findings of mentioned

meta-analyses are contrasting. While Chu et al. (2020) reports immense protective abil-

ities of face masks, Jefferson et al. (2023) finds little to no difference in wearing a mask

compared to not wearing one. In addition, we contribute to the literature by perform-

ing a quantitative meta-analysis of studies on Covid-19 only. Furthermore, we focus on

the examination of heterogeneity and determining its drivers as this was not included in

greater detail in the mentioned meta-analyses. Since many variables reflecting the differ-
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ences among the studies are collected, the model uncertainty needs to be addressed. As

a solution, we apply the Bayesian and Frequentist model averaging. We found the tem-

perature, geographical latitude, panel data structure, risk ratio estimate type, healthcare

set-up, standard error and age to have a positive effect on the risk of Covid-19 infection

associated with mask-wearing. The positive effect means that for these variables masks

provide lower protection. On the other hand, performing an aerosol-generating procedure

has a negative effect. The interpretation of such a result is that mask-wearing is essential

during these procedures. Moreover, as a robustness check, the Bayesian model averaging

is estimated with different model priors and g-priors yielding highly comparable posterior

inclusion probabilities for the variables.

Lastly, the contribution of this paper lies in the implementation of new meta-analysis

approaches developed in economics, and psychology. These methods provide much more

credible results compared to the ones used in other meta-analyses. Moreover, we improve

other meta-analyses on the topic by including 44 studies specifically on Covid-19. As

compared to other authors, a wide spectrum of modern meta-regression methods is used.

In addition, we go beyond just estimating the true value of the effect of face masks on

Covid transmission and determine the drivers behind the heterogeneity of the estimates.

The paper is structured as follows. Section 2 describes in detail the procedure used

to obtain the data, and the recalculation of both effects and standard errors to achieve

comparability of the estimates. Section 3 focuses on the examination of publication bias

by various modern methods. Section 4 implements the model averaging techniques to

explain the drivers of heterogeneity. Section 5 presents the implied estimates and Section 6

summarises the paper.

2 Data

To construct the dataset, we first search the Google Scholar database for relevant studies.

Google Scholar is considered superior to other databases because of its ability to search

through the full text of studies. In this way, we can include studies that do not have all the

desirable keywords combined in the title or abstract (Gechert et al., 2022). Additionally,

including only one query for one database allows the search process to be replicated.

The details of the literature search and a full list of included studies can be found in
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Appendix A. Moreover, for a study to be included in the quantitative meta-analysis, the

effect has to be reported as Relative Risk (RR), Odds Ratio (OR), Hazard Ratio (HR),

increase in the number of identified Covid-19 cases for both treatment and control groups

or relative change in Covid cases. The study has to report standard errors, confidence

intervals or p-values, and sample size. In addition, there needs to be exact information

on the intervention, and control group and its definition.

The number of studies included in the meta-analysis is 44. Out of these studies, we

collect 258 estimates. Apart from the effects and their standard errors, we collect variables

on the estimation methods, sample size, the data type used in the primary studies, vari-

ables on publication, relevant control variables included in the models, variables on study

setting and country-level variables. Together with corresponding variables the dataset

consists of more than 9,300 data points.

To perform a meta-analysis one needs the effect from the studies to be directly com-

parable. All the effects were recalculated to the risk of Covid-19 infection. There are

several reasons for this decision. Firstly, the risk of infection is centred around zero. This

means that if there would be zero risk of infection, the corresponding estimate would be

= 0 as well. On the other hand, estimates expressed in OR and RR are centred around

one, meaning that if there is no effect found, the corresponding estimate would be = 1.

As a result, the tests performed on these estimates and the computation of standard er-

rors would not be straightforward and would require additional adjustments. Secondly,

RR, OR and relative change in Covid-19 cases can be easily recalculated to the risk of

infection. On the other hand, the recalculation of the effect expressed as a relative change

in Covid-19 cases to OR would require more complex computations. The third reason

for not choosing OR as a common measure of effects, despite being the most represented,

is interpretation difficulties. Moreover, Higgins et al. (2019) suggest that the OR is the

hardest measure in terms of understanding, and application, and is often misinterpreted

by researchers. Throughout the data collection, 7 estimate types are identified. The

methods for recalculating each type of estimate can be found below.

Risk Ratio For studies, that report their estimates as risk ratio, we can use Equation 1

to express RR as 1 plus risk. Thus, to recalculate RR as the risk of Covid-19 infection,
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we subtract 1 from the estimate.

RR =
risktreated
riskcontrol

=
riskcontrol + riskchange

riskcontrol
= 1 +

riskchange
riskcontrol

= 1 + risk (1)

risk = RR− 1 (2)

Apart from the risk ratio, we can find terms relative risk or rate ratio in the literature.

The use of these measures is, however, inconsistent. The main difference is that the risk

ratio and relative risk compare the incidence of an event between treatment and control

groups. Whereas, the rate ratio uses the incidence rate in two time intervals. In the

studies included in the meta-analysis, the time intervals are implemented to differentiate

the treatment and control period. As a result, we can treat all of the mentioned ratios

similarly.

Prevalence Ratio Estimates reported as prevalence ratios can be considered equivalent

to the RR. The only recalculation needed is subtracting 1 from the estimate.

Hazard ratio The Hazard ratio is different from RR because it takes into account not

only the number of events occurring during the observation period but also the timing.

Despite the two ratios not being identical, their interpretation is the same. Spruance

et al. (2004) suggests that the hazard ratio is an approximation of RR. To standardise

the hazard ratio, we subtract 1 from the estimate.

Odds Ratio If authors report their estimates as an odds ratio, we can use the following

formula described by Zhang & Yu (1998) to recalculate them to the risk of Covid-19

infection.

risk =
OR

1 − p0 + p0 ∗OR
− 1 (3)

Where p0 represents the Covid-19 incidence of the control group. As already mentioned,

the OR tends to be misinterpreted as RR. This practice is however troubling. If po < 10%

the odds ratio estimated by logistic regression can approximate the risk ratio. On the

other hand, the higher the incidence, the less precise the approximation is (Zhang & Yu,

1998).
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Percentage Increase For studies reporting the estimates as a percentage increase, we

implement the following standardisation.

risk =
percentage increase

100
(4)

Change Studies that report their estimates as a change to the absolute number of

Covid-19 cases need the following standardisation.

risk =
riskchange
riskbase

(5)

Regression Coefficient Studies that report the estimates of the effect of masks on the

log weekly case growth rate were standardised according to the following equation based

on the interpretation of results of the study by Karaivanov et al. (2021).

risk = exp(estimate) − 1 (6)

Similar to the estimates, their standard errors need to be recalculated or determined

based on p-values or confidence intervals.

Delta Method Firstly, if the standard error is reported, but the estimate needs to be

standardised, we employ the Delta Method. We are able to use the Delta Method only for

the studies that report their estimates as the change to the absolute number of Covid-19

cases. Thus, the Delta Method has the following form.

se(risk) = var

(︃
riskchange
riskbase

)︃ 1
2

=

(︄(︃
1

riskbase

)︃2

var(riskchange)

)︄ 1
2

=

=
se(riskchange)

riskbase

(7)

Calculation using p-value If a study reports p-values only, we determine the corre-

sponding t-statistic and calculate the standard error for a recalculated estimate using the

t-statistic.

Calculation using confidence intervals For studies reporting confidence intervals,

we calculate the standard error according to the following equation for 95% confidence
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intervals. The upper and lower bounds of the confidence interval first need to be adjusted

based on the method used to recalculate the effect.

se(risk) =
(CIupper − CIlower)

3.92
(8)

After collecting the data, we carefully inspect the dataset and pay specific attention

to the outliers. We excluded two observations from the analysis, the number of studies

was thus reduced to 43. Next, we winsorize the effects and their standard errors at 1%

level. Figure 1 shows the distribution by effect magnitude. The estimates of the effect

Figure 1: Effect distribution

Note: The figure shows the distribution by effect
magnitude using winsorized data. The outliers are
excluded from the figure but are included in the
calculation. The solid vertical line represents 0 in-
tercept. The dotted vertical line is a simple mean
and the dashed vertical line represents the weighted
mean.

of face masks on Covid-19 transmission range from −0.956 to 0.33 with a mean value

of −0.268, and median value of −0.2. Additionally, we calculate the mean weighted by

the inverse number of observations per study which equals −0.425. The simple mean is
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higher because studies presenting a higher number of estimates of higher values drive the

mean closer to zero. Additionally, the mean value is higher than the median which would

suggest a skewed dataset. Chu et al. (2020) report the effect as RR = 0.34 which can

be expressed as risk = 0.66. This estimate is much higher than the mean and median

values for our collected effects. If we take into account, that even though Chu et al. (2020)

included 44 studies in their meta-analysis, only 4 of them were focused on face masks and

Covid-19, their estimates might not be accurate. It is important to mention, that these are

just initial remarks based on Figure 1 observation and we cannot draw any conclusions

yet. Figure 2 or forest plot displays the estimates across studies. It is apparent from

the figure, that estimates vary not only across studies but also within individual studies.

Moreover, over 90% of the estimates are negative.

Table 1 shows the mean effect of face masks on Covid-19 transmission for selected sub-

samples. Some studies or some estimates of studies have their control group protected

by lower levels of face masks (respirators for the treatment group and surgical masks for

the control group). For these estimates, the mean suggests that wearing a mask might

reduce the risk of infection by a lower amount compared to the estimates, where the

control group is not protected at all. That would be reasonable since masks might reduce

the risk of transmission in the control group as well. For respirators, we can observe a

lower conditional mean risk of infection compared to the surgical masks. For panel data,

we can see a higher mean likewise. This could be caused by controlling for other social

distancing policies. Additionally the policy control variable and panel data variable are

highly correlated.

Interestingly, for estimates with an average minimum temperature during the study

period higher or equal to 15°C (warm areas) the mean effect of masks on Covid-19 trans-

mission is higher compared to the mean of estimates where the average maximum tem-

perature is lower or equal to 15°C (cold areas). For the estimates computing their effect

from data only we calculate their simple and weighted mean in order to check whether

the effect was not overestimated (masks would be too effective) in these cases. Both

means were closer to zero than the means for the rest of the sample. Additionally, these

studies are included in the meta-analysis by Chu et al. (2020). The estimates also include

results from studies with double zero events, which are highly suggested to be included

in a meta-analysis Xiao et al. (2021). What is more, they represent only around 5% of all
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Figure 2: Risk of Covid-19 infection across included studies

Note: The figure shows the effect box plot for every included study calculated
using winsorized data. The solid vertical line represents 0 intercept. The
dotted vertical line is a simple mean and the dashed vertical line represents
the weighted mean. Each row represents the individual study included in the
meta-analysis. For each study, we present the box plot. Where boxes represent
the inter-quartile range (from 25% to 75%). The dots are outliers.
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Table 1: Conditional means

Mean 95% CI n

Full sample -0.268 (-0.805, 0.269) 256

Methodology and effect type
RR -0.165 (-0.681, 0.351) 56
OR -0.425 (-1.062, 0.211) 96
change -0.158 (-0.320, 0.003) 82
effect from data -0.160 (-0.938, 0.618) 15
regression -0.266 (-0.767, 0.235) 238
logit -0.426 (-1.058, 0.207) 93
cox -0.240 (-0.524, 0.043) 25

Study set-up
personal controls -0.286 (-0.844, 0.273) 104
policy controls -0.191 (-0.481, 0.098) 94
healthcare -0.306 (-0.966, 0.354) 68
AGP -0.379 (-1.044, 0.287) 34
vaccination available -0.384 (-0.910, 0.143) 31

Mask variables
mask frequency = all -0.312 (-0.864, 0.239) 68
mask frequency = some -0.126 (-0.468, 0.216) 41
respirator -0.294 (-0.909, 0.321) 46
surgical mask -0.213 (-0.698, 0.272) 32
control masked = 1 -0.174 (-0.601, 0.253) 35
control masked = 0 -0.283 (-0.830, 0.265) 221

Data characteristics
panel data -0.160 (-0.411, 0.091) 164
individual level -0.315 (-0.932, 0.301) 172
random trial -0.148 (-0.428, 0.131) 42
data year = 2020 -0.276 (-0.830, 0.279) 189
data year = 2021 -0.245 (-0.730, 0.240) 67

Country characteristics
China -0.637 (-1.164, -0.110) 15
Bangladesh -0.151 (-0.562, 0.261) 36
Switzerland -0.175 (-0.549, 0.199) 39
USA -0.186 (-0.735, 0.363) 68
temperature min ≥ 15°C -0.276 (-0.786, 0.234) 108
temperature max ≤ 15°C -0.491 (-0.989, 0.007) 16

Note: The table displays conditional means of the effect of face
masks on Covid-19 transmission and corresponding confidence inter-
vals (CI) for selected sub-samples, n = sub-sample size, RR = relative
risk, OR = odds ratio, AGP = aerosol generating procedure.
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observations, thus we decided to include them in the dataset.

Lastly, with available vaccination, the mean is lower. Which is likely caused by the

majority of studies not controlling for vaccination. Thus the seemingly more protective

effect of face masks might be probably caused by omitting the vaccination variables from

models of primary studies. These are again only observations based on simple descriptive

statistics, which cannot be used to draw any conclusions.

3 Publication Bias

Publication bias is a phenomenon occurring with a preference of researchers for significant

effects causing the published papers not to be representative of all the conducted research

(Rothstein et al., 2005; Stanley, 2005). The probability of a paper being published is

often determined by the significance of its results (Gerber et al., 2008). To achieve the

desired significance, researchers indulge in intentionally adjusting the datasets, creating

sub-samples, modifying specifications, and p-hacking (Brodeur et al., 2018, 2016).

With the use of meta-regression analysis, publication bias and p-hacking are discovered

in the literature on different spheres, among others in economics, social sciences, and

medical research (Stanley, 2005). Taking into account that publication bias in medical

and related research might have serious consequences for the health of individuals. Some

studies, especially at the beginning of the Covid-19 pandemic report a huge protective

ability of face masks (Doung-Ngern et al., 2020; Chen et al., 2020; Maltezou et al., 2020;

Wang et al., 2020a,b). Combined with uncertainty about the reproduction number of the

different variants of Covid-19, populations relying too much on the protective abilities of

face masks might have fatal consequences. After examination of the other meta-analyses

on the topic, we conclude that the majority of them rely on graphical methods only.

Thus, the evaluation of publication bias would benefit from more rigorous methods. The

methods that are used in this paper take inspiration from the ones used by Gechert et al.

(2022); Havranek et al. (2021) in their meta-analyses.

The first method we employ is the graphical method for publication bias detection

called Funnel plot as in Egger et al. (1997). The horizontal axis plots the estimates of the

risk of Covid-19 infection associated with mask-wearing versus their accuracy (the inverse

of standard errors) on the vertical axis. The estimates with higher precision should be
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Figure 3: Funnel plot

Note: The figure shows the funnel plot as presented
by Egger et al. (1997). Outliers were excluded from
the figure.

located around the true value of the risk. On the other hand, the lower the precision

of the estimates, the wider the distribution. In our case, it is obvious from Figure 3,

that the less precise estimates are located close to the horizontal axis. The funnel plot’s

ability to graphically detect publication bias lies in the following: If the publication bias

is not present in the sample, the funnel should appear symmetrical. In the presence

of publication bias, the funnel plot will lose its symmetry, introducing skewness and

asymmetry.

One can notice the estimates with the highest precision are centred around a negative

value relatively close to zero. On the right side of the plot, there are missing values,

compared to the left side of the funnel, which only has estimates with low precision. Such

a pattern could suggest possible publication bias. The interesting fact, that we consider

important to mention, is that the mean and weighted mean values of the effect are both

negative and noticeably different from zero, which is caused by a large number of studies

with negative effects of higher magnitude. Generally, the true effect being negative would

be in line with the existing theory about mask usage (Ueki et al., 2020; Wilson et al.,

2021), and why populations were advised for their use in the first place.

Next, we apply the numerical methods to test for the funnel asymmetry more rigor-
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ously. If the publication bias is not present in the collected estimates, the risk of Covid-19

infection associated with mask-wearing should not be correlated with the standard er-

rors of the risk estimates. The relationship could be induced by studies with less precise

estimates adjusting their specifications and/or sample sizes to achieve significant results

(Stanley, 2005).

As presented in Table 2, Panel A we used five different methods. The estimates from

the simple OLS are presented in the first column of the table. The estimated publication

bias seems to be quite small and significant only at 10%. The fixed effects (FE) model,

accounting for the different characteristics on the study level, is the only model showing

a highly significant presence of publication bias. The other three methods do not yield

a significant estimate of publication bias. The between effects (BE) model accounts for

between-study variance. The last two columns of the table present models weighted by

the inverse number of estimates reported per study and the inverse of the variance as in

Ioannidis et al. (2017). On the other hand, the estimates of the effect beyond bias are all

negative and highly statistically significant in four out of five presented models.

Table 2, Panel B shows the methods allowing for a non-linear relationship between

effects and standard errors. We implement six methods for estimating the effect beyond

bias, and two of these methods to estimate the publication bias. Firstly, we estimate the

endogenous kink model as proposed by Bom & Rachinger (2019). The authors developed

a meta-regression technique for publication bias correction that locates a kink in the

distribution of standard errors. The non-linear method features a horizontal part and a

sloped line that together creates the kink. The kink in the standard errors’ distribution

is chosen so that publication bias is not probable beneath the distinguishing value. The

publication bias estimate is again not significant. Next, we estimate a Hierarchical Bayes

model according to Allenby & Rossi (2006). With the use of Bayesian statistics, the model

utilises the variability of estimates within individual studies and based on these differences

determines the weights assigned to each estimate. Similar to the previous method, the

publication bias estimate is not significant. Regarding the effect beyond bias, the estimate

yields a magnitude similar to the weighted mean of the effects.

The weighted average of adequately powered estimates (WAAP) method includes only

the adequately statistically powered observations and runs a weighted meta-regression

only on this sub-sample (Ioannidis et al., 2017). As a result, only 75 observations remained
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Table 2: A mild evidence for publication bias, corrected effect around -0.2

Panel A: Linear methods

OLS FE BE Study Precision

Publication bias 0.074* -0.436*** -0.306 0.040 -0.436
(Standard error) (0.038) (0.068) (0.222) (0.038) (2.104)

Effect beyond bias -0.282*** -0.187*** -0.243*** -0.197*** -0.187
(Constant) (0.018) (0.001) (0.027) (0.008) (0.158)

Observations 256 256 256 256 256

Panel B: Nonlinear methods

Stem WAAP Top10 AK Kink Bayes

Publication bias -0.436 0.180
(Standard error) (1.315) (0.304)

Effect beyond bias -0.092 -0.223*** -0.094* -0.240*** -0.187*** -0.440***
(Constant) (0.110) (0.030) (0.035) (0.032) (0.024) (0.097)

Observations 256 256 256 256 256 256

Panel C: Endogeneity-robust methods

IV p-uniform*

Publication bias 0.249 0.148***
(Standard error) (0.191) (0.068)

Effect beyond bias -0.221*** -0.422***
(Constant) (0.028) (0.111)

Observations 256 256

Note: Panel A: The estimates of regression riskij = β0+β1 ∗ (SErisk)ij +uij , where riskij is the i-th
estimate of risk from the j-th study. (SErisk)ij is the standard error of the i-th estimate of risk from
the j-th study. OLS = Ordinary Least Squares, FE = Fixed Effects, BE = Between Effects, Study =
estimates weighted by the inverse number of observations reported per study, Precision = estimates
weighted by the inverse of standard errors. Panel B: Stem = stem-based method as in Furukawa
(2019), WAAP = weighted average of adequately powered estimates (Ioannidis et al., 2017), Top10
= method due to Stanley et al. (2010), AK = Selection model due to Andrews & Kasy (2019), Kink
= endogenous kink model (Bom & Rachinger, 2019), Bayes = hierarchical Bayes model as in Allenby
& Rossi (2006). Panel C: IV = regression taking the inverse of the square root of the number of
observations as an instrument for the standard error as in Gechert et al. (2022), p-uniform* = method
developed by van Aert & Van Assen (2019) is estimated using the method of moments. Standard
errors are reported in parentheses. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

in the sample. The effect beyond bias coefficient is significant and similar to the estimates

from the linear methods. The Stem-based method focuses only on the most precise

estimates, the stem of the funnel (Furukawa, 2019). The idea is that the bias would
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decrease as the variance increases (given the higher number of observations).

Next, we employ the TOP10 method as discussed by Stanley et al. (2010). The author

suggests that using only the best 10% of the data can improve the statistical estimation

and reduce the publication selection bias, however contradictory to the statistical theory

this might be. Nevertheless, the reason for this is that 90% of the data are not represen-

tative because of the publication bias. Hence, the remaining 10% of the data should be

a better base for efficiently estimating the true effect. The estimated effect beyond bias

is significant only at the 10% level and slightly lower than the estimates produced by the

other methods. The trustworthiness of the estimate should be in question because of the

low number of observations. The last method for non-linear approaches is the Selection

model due to (Andrews & Kasy, 2019). The non-parametrically determined probability

of a study being published is a function of its results. This probability can be applied in

the correction of publication bias.

Until now, the methods we discuss assume that the standard errors are exogenous.

The issue with this assumption is the following. The standard errors and the effects

could be correlated not only because of the presence of publication bias but also as a

result of unobserved heterogeneity or measurement errors. We suggest this would be the

case for the effects and the standard errors in the collected dataset. As a result of the

different methodological approaches used in the primary studies, we expect that some of

the methods yield systematically higher standard errors.

Table 2, Panel C shows the results of two methods: IV estimation using the inverse

of the square root of the number of observations in primary studies as an instrument for

standard errors as suggested by (Gechert et al., 2022). The second method, p-uniform*

due to van Aert & Van Assen (2019), identifies a significant presence of publication bias.

The effect beyond bias is closer to the weighted mean of the studies compared to the other

methods. The idea behind the method is the following. The p-values should be distributed

uniformly. However, the publication bias is affecting their distribution. Under publication

bias, the significant estimates just below the threshold are over-represented, on the other

hand, the estimates with p-values just above the 5% level are under-represented. The goal

of the p-uniform* method is to find a value around which the p-values follow a uniform

distribution.

Let us present the last method allowing for endogeneity in standard errors. Caliper
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test as described by Gerber et al. (2008). Authors suggest that publication bias is the

cause of possible jumps in the distribution of t-statistics at significant thresholds of 1.96

and -1.96. Additionally, it is possible to evaluate the behaviour at the 0 threshold. Fig-

ure 4 shows the distribution of t-statistics for collected effects of face masks on Covid-19

transmission. Looking at the -1.96 threshold we can see a jump in the distribution, with

more observations just above the threshold. At 1.96 we cannot observe any t-statistics.

Since the majority of our effects are negative, so are the corresponding t-statistics, re-

sulting in no values at this threshold. At 0 we do not observe any major jumps in the

distribution. However, only a simple glance at the figure suggests that there are more

effects in the (−1.96, 0) interval than in the (0, 1.96) one.

Figure 4: t-statistics distribution

Note: The figure shows the distribution of t-
statistics. The solid vertical lines display -1.96 and
0 thresholds. The dashed vertical line represents the
simple mean of t-statistics. The outliers are excluded
from the figure but remain in the calculations.

The Caliper test as compared to the previous methods does not assume any relation-

ship between effects and standard errors. The idea is to compare the number of t-statistics

above and below the significance threshold to detect whether publication bias is present.

Table 3 shows the performed Caliper tests for -1.96 and 0 thresholds for presented Caliper

widths. We would like to note that as a result of the sample size the Caliper widths are
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set quite wide to have enough observations in the given Calipers. Since the Caliper of the

width 0.2 contains only 9 t-statistics we would rather not interpret the results of the test.

For Caliper widths 0.5, 0.6, 0.7 and 0.8 significant results are obtained. The value 0.684

for 0.5 Caliper width can be interpreted as follows. For interval (-2.21, -1,71) there are

38 t-statistics and 68.4% of them are below the -1.96 threshold. The percentage is even

higher for wider Calipers. For the 0 threshold, we do not detect any significant results.

Table 3: Publication bias: Caliper tests

Threshold = -1.96 n Threshold = 0 n

Caliper width = 0.2 0.778* 9
(0.147)

Caliper width = 0.3 0.632 19
(0.114)

Caliper width = 0.4 0.583 24
(0.103)

Caliper width = 0.5 0.684** 38
(0.076)

Caliper width = 0.6 0.745*** 51 0.615 13
(0.062) (0.140)

Caliper width = 0.7 0.724*** 58 0.556 18
(0.059) (0.121)

Caliper width = 0.8 0.730*** 63 0.579 19
(0.056) (0.116)

Note: The table displays the results of the Caliper test as described by Gerber
et al. (2008) for presented Caliper widths. Caliper width of 0.1 does not contain
enough observations even for the -1.96 threshold, standard errors are presented
in parentheses. The value 0.684 for 0.5 Caliper width can be interpreted as
follows. For interval (-2.21, -1,71) there are 38 t-statistics and 68.4% of them
are below the -1.96 threshold, ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

To summarise, we find significant evidence for publication bias only in some of the

performed tests. For tests that identify a significant presence of publication bias in the

literature, its magnitude was considered mild. According to Doucouliagos & Stanley

(2013) the estimate of |β1̂|< 1 is considered to be mild evidence of publication bias.

These findings are in line with the ones by Chu et al. (2020). The effect beyond bias is

estimated to be negative and statistically significant for almost all of the methods. In

addition, we do not detect any positive significant estimates of the effect beyond bias.

As a result, we believe that the true effect is negative, but its magnitude is varying.

The significant estimates of risk associated with face mask-wearing range from -0.187 to
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-0.440. These values can be interpreted as follows: Wearing a face mask is associated with

a reduced risk of Covid-19 infection by 18.7% to 44%.

4 Heterogeneity

The varying effect is likely driven by different factors. To provide the reader with a better

understanding of how the studies differ, we explain the rationale behind the collected

variables. The variables together with their definitions can be seen in Table 4. Firstly, to

account for the possibility of different methods producing systematically higher or lower

estimates, we collect the corresponding dummy variables. The majority of estimates

are obtained by the implementation of a certain type of regression (Logistic, Cox and

corresponding HR, weighted OLS,...). These estimates account for almost 95% of all

collected effects. We define dummy variables for the type of estimated effect: RR, OR,

absolute and relative change in Covid-19 cases. The last variable is joined with a dummy

variable for percentage increase, and a dummy for regression coefficient. The reason for

joining the three variables is the similarity in the approach of the primary studies which

estimated the types of effects.

Secondly, we consider it beneficial to include a set of dummy variables to code the

control variables included in the models. Unfortunately, the vast majority of primary

studies included in the meta-analysis as well as other studies that we encountered during

the identification procedure are of low transparency. The studies do not include the full list

of variables included in their models. However, we collect at least two dummy variables:

controlling for personal and policy characteristics. Brooks-Pollock et al. (2021) suggest

that these variables influence the transmission of Covid-19, and their omission would

result in biased estimates. Moreover, controlling for vaccination in the models of primary

studies is almost non-existent. The first reason could be that the studies were conducted

before the vaccination was publicly available. However, even the studies carried out during

the periods when vaccination was already available failed to control for the vaccination.

To account for vaccination, a dummy variable indicating its availability in a given region

and time period is coded. Next, we distinguish between studies performed in healthcare

and non-healthcare environments. In addition, for healthcare studies, we code a variable

representing whether healthcare workers performed aerosol generating procedures (AGP).
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Performing AGP increases the risk of infection due to the transmission route of Covid-19

(Lotfi et al., 2020; Liu et al., 2020). We also code a dummy variable for studies that use a

lower grade of protection as their control. Such a practice would likely produce different

estimates compared to having non-masked individuals as controls. Studies designed as

randomised clinical trials are properly randomised and the control and treatment groups

should be comparable in terms of the characteristics of included subjects (National Cancer

Institute, 2022). Consequently, estimates from these studies should be close to the true

effect.

Thirdly, we code a dummy variable for a panel data structure. Following the reporting

guidelines by Havranek et al. (2020), we collect the variables for the sample size, and the

average year in which the study is performed. Regarding the publication characteristics,

we collect a dummy for studies published in a peer-reviewed journal, and a variable

reflecting the impact factor of a journal in which a study is published. Unfortunately, we

are not able to use the RePEc factor, since the majority of journals are not of an economic

nature. As a substitute, we use the JCR database which also includes medical journals.

Next, we collect a variable on the year of the publication, and the number of citations in

Google Scholar in line with Havranek et al. (2020).

According to World Health Organisation (2022), the number of Covid-19 cases varies

for different countries. We include country variables geographical latitude of the region

where the study is conducted, and the minimum and maximum average temperatures. The

temperature variables are determined based on the area and time period of the study. As

suggested by Shi et al. (2020) and Notari (2021) temperature is a fundamental factor in

the dynamics of Covid-19 transmission. In addition, we include a variable representing

the average age of the subjects.

Now that we have characterised potential drivers behind the heterogeneity of the

effects, we follow with the estimation. To avoid multicollinearity, we need to exclude

some of the correlated variables. We do so based on their variance inflation factors (VIF),

and correlation coefficients (correlation table is presented in Appendix B). As a result,

8 variables are removed and 18 are selected for the analysis (all of them with VIF score

below 7). If we were to estimate models with all of the possible combinations of variables,

the number of these models would be 218. To address the model uncertainty and over-

specification with likely biased and imprecise results, we use the approach commonly used
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Table 4: Description of variables

Variable Description Mean SD

effect the risk of Covid-19 infection -0.268 0.274
standard error standard error of the risk of Covid-19 infection 0.187 0.470

Methodology and effect type
RR =1 if a study reports the estimates as relative risk 0.219 0.414
OR =1 if a study reports the estimates as odds ratio 0.375 0.485
change =1 if a study reports the estimates as a change to

identified Covid-19 cases
0.320 0.468

effect from data =1 if the effect is calculated from data 0.059 0.235
regression =1 if the effect is estimated using any kind of regression 0.930 0.256
logit =1 if the effect is estimated using regression with logit

link
0.363 0.482

cox =1 if the effect is estimated using Cox regression 0.098 0.297

Study set-up
personal controls =1 if a study controlled for personal characteristics in

its model
0.406 0.492

policy controls =1 if a study controlled for other social distancing
policies in its model

0.367 0.483

healthcare =1 if a study was conducted in a healthcare setting 0.266 0.443
AGP =1 if subjects were performing AGP 0.133 0.340
vaccination available =1 if vaccination was available during the period and

country in which a study was performed
0.121 0.327

random trial =1 if a study is of random trial design 0.164 0.371
individual level =1 if a study was performed on an individual level 0.672 0.470
control masked =1 if the control group was using a lower grade of mask 0.137 0.344

Data characteristics
panel data =1 if the data is of panel structure 0.641 0.481
sample size logarithm of a sample size of a study 7.904 2.060
year data the year in which a study was performed (average for

more years)
2020.262 0.440

Country and individual characteristics
min temperature average minimum temperature for a study’s time period

and area
3.555 10.559

max temperature average maximum temperature for a study’s time period
and area

27.012 5.772

latitude logarithm of latitude of study’s area 3.627 0.429
age logarithm of the average age of study’s subjects 3.684 0.211

Publication characteristics
peer review =1 if published in peer-reviewed journal 0.992 0.088
impact logarithm of the impact factor of a journal 2.348 1.588
year publication logarithm of the year in which a study was published 2021.039 0.619
citations logarithm of the number of citations on Google Scholar 4.262 1.395

Note: The table displays the definition, mean, and standard deviation of variables eligible for use in meta-
regressions, AGP = Aerosol Generating Procedure, personal characteristics = age, education, number of
children, household members, occupation, et cetera, policy controls = stay-at-home orders, restrictions on
public gatherings, school closures, et cetera, year and temperature variables are not in log scales because of
low variability and negative values respectively.
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in meta-analyses, Bayesian model averaging (BMA) (Havranek et al., 2018; Havranek &

Sokolova, 2020; Havranek et al., 2021; Gechert et al., 2022).

BMA selects the most appropriate subset of regressors based on the models’ perfor-

mance. Each regressor is then assigned a posterior inclusion probability (PIP) that is

calculated based on the performances of the models, where the given regressor is included

(Eicher et al., 2011; Steel, 2020). We use a Markov chain Monte Carlo (Madigan et al.,

1995) algorithm to select for estimation only those models from the model space where

performance is high. We set the g-prior for each coefficient to the common practice in

meta-analyses, a unit information prior, meaning the weights are set to give the prior the

same importance as one individual observation (Eicher et al., 2011; Havranek et al., 2018).

In addition, we need to choose the prior for the model probability. As a baseline, we se-

lect the dilution prior, which is more suitable when dealing with potential collinearity.

For small sample sizes - as is the case of this paper, the models are prone to suffer from

collinearity. The dilution prior tackles the issue by giving less weight to the models suffer-

ing from a lot of collinearity (George et al., 2010). Figure 5 shows the graphical results of

BMA. In addition, we implement the frequentist model averaging (FMA). Following the

practice of Gechert et al. (2022) we employ Mallow’s criteria as weights (Hansen, 2007),

and orthogonalization of the covariate space as in Amini & Parmeter (2012). The results

of both BMA and FMA are presented in Table 5.

The highest posterior probability inclusion can be seen for variables representing the

maximum average temperature and geographical latitude. The coefficient for max tem-

perature is positive, which can be interpreted as follows. With increasing maximum

temperature the protection provided by masks is lower. This is probably caused by the

lower transmission of Covid-19 during summer periods (Shi et al., 2020). For latitude, the

interpretation is the following: with increasing latitude, the masks are less effective. This

would be caused by lower temperatures for regions with higher latitudes. For variable

panel data, we get a positive estimate as well. The reason is that the panel data variable

is correlated with the random trial variable which is not included in the model. The

reasoning is that these estimates are higher because the panel structure of the data would

likely decrease the probability of estimating the effect at a non-representative point in

time. As expected, the healthcare variable has also a positive effect. This means that the

masks are less protective in the healthcare environment where healthcare professionals
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Table 5: The results of BMA and FMA

Response variable: Bayesian model averaging Frequentist model averaging
estimate of risk (baseline) (frequentist check)

post. mean post. SD PIP coef. SE p-value

standard error 0.043 0.051 0.492 0.039 0.042 0.355
intercept -2.797 NA 1.000 -3.466 0.444 0.000

Methodology and effect type
RR 0.119 0.065 0.850 0.115 0.066 0.082
effect from data 0.069 0.106 0.365 0.150 0.093 0.106
logit 0.012 0.033 0.164 0.074 0.061 0.228
cox -0.003 0.019 0.080 -0.004 0.053 0.942

Study set-up
personal controls -0.000 0.008 0.058 -0.014 0.031 0.648
policy controls -0.008 0.029 0.136 -0.032 0.051 0.531
healthcare 0.110 0.076 0.747 0.127 0.060 0.034
AGP -0.152 0.087 0.832 -0.170 0.056 0.002
vaccination available -0.005 0.024 0.099 -0.026 0.052 0.620
control masked 0.012 0.037 0.149 0.026 0.060 0.660

Data characteristics
panel data 0.196 0.047 0.997 0.209 0.053 0.000
sample size 0.001 0.006 0.109 0.006 0.011 0.564

Country and individual characteristics
max temperature 0.372 0.079 1.000 0.431 0.074 0.000
latitude 0.236 0.049 1.000 0.265 0.050 0.000
age 0.058 0.079 0.419 0.126 0.067 0.060

Publication characteristics
impact 0.004 0.009 0.229 0.008 0.011 0.446
citations 0.011 0.016 0.410 0.024 0.014 0.073

Note: The table displays the results of Bayesian model averaging with dilution model prior and Frequentist
model averaging results, PIP = Posterior Inclusion probability, RR = relative risk, AGP = Aerosol Generating
Procedure, max temperature does not contain any negative values, hence it is in log scale, PIP ∈ [0.5, 0.75) =
week evidence, PIP ∈ [0.75, 0.9) = positive effect, PIP ∈ [0.9, 0.99) = strong effect, PIP ∈ [0.99, 1) = decisive
effect, the posterior inclusion probability can be considered analogous to the statistical significance of a variable
(Kass & Raftery, 1995).
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Figure 5: BMA with a dilution model prior and unit information g-prior

Note: The figure shows the Bayesian Model Averaging with the dilution model
prior and unit information g-prior. The response variable is the risk of Covid-
19 infection. The horizontal axis represents the cumulative posterior model
probability (PIP). The regressors are ordered in descending order based on
their PIP. The included regressors with positive signs are displayed in blue
(dark in grayscale) colour, and with negative signs in red (light in grayscale)
colour. The Regressors not included in the model are left without any colour.

are in frequent contact with infected individuals. Lastly, the AGP variable has a negative

effect. According to the present author, it can be interpreted as follows: using a face mask

during procedures that generate aerosols is essential for decreasing the risk of infection.

The risk estimated in the form of RR seems to be systematically higher (lower protection

of masks). As apparent from the Table 5 the results of both averaging methods are com-

parable. In addition to the already presented models, we perform BMA with different

g-priors and model priors yielding comparable results.

5 The implied estimate

As a bottom line of the meta-analysis, we present the implied estimates. We derive the

estimates of the prominent studies on the effect of face masks on Covid-19 transmission
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corrected for publication bias and misspecifications. Firstly, we choose the study by

Karaivanov et al. (2021). The study is published in the Journal of Health Economics

with over 130 citations in Google Scholar. The econometric models estimated in the

study are described in great detail with all included control variables. Compared to other

studies, the paper stands out for its transparency. The implied estimate equals to −0.136.

For the set-up of the study, masks reduce the risk of Covid-19 infection by 13.6%.

Table 6: Implied estimates

Study Implied estimate 95%CI

Karaivanov et al. (2021) -0.136 (-0.161, -0.111)
Bundgaard et al. (2021) -0.129 (-0.229, -0.030)
Nguyen et al. (2020) -0.157 (-0.288, -0.025)

Secondly, the implied estimate is derived for the study by Bundgaard et al. (2021).

The reason for choosing the study is its random trial design with proper randomisation

of the control and treatment groups. The study is published in the Annals of Internal

Medicine with over 350 citations in Google Scholar. The derived estimate equals −0.129.

This means, that the masks reduce the risk of infection by 12.9%. The third derived

estimate is for a study in a healthcare setting by Nguyen et al. (2020). It is published

in The Lancet Public Health journal and has over 2,000 citations in Google Scholar. Its

implied estimate equals −0.157. In the given context, masks reduce the risk of infection

by 15.7%. All of the implied estimates derived for the studies are negative, including the

upper bounds of their 95% confidence intervals (Table 6).

6 Conclusion

One might think that the effect of face masks on Covid-19 transmission is strictly a

medical topic. However, we would like to emphasise its economic consequences. The

Covid-19 pandemic and related social distancing measures caused a sharp decline in the

GDP of major economies (Jena et al., 2021). Bagepally et al. (2021) suggest that the

costs associated with surgical mask-wearing amount to almost one billion USD. Resulting

in avoiding more than 1,100 per million cases of Covid-19. However, these costs depend
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on the value of the true unbiased effect. In addition, our results could be important for

policymakers.

We perform a meta-analysis on the effect of face masks on Covid transmission. We

collect 258 estimates of the effect from 44 studies together with corresponding variables

on the methodology and effect type, study set-up, data, country and individual, and pub-

lication characteristics. Together more than 9,300 data points are collected. Firstly, we

examine the publication bias by employing many modern tests. The performed meth-

ods are divided into three categories. The linear methods for publication bias detection

include a graphical method: funnel plot (Egger et al., 1997), and numerical FAT-PET

with different weights. We perform non-linear tests such as endogenous kink model (Bom

& Rachinger, 2019), stem-based method (Furukawa, 2019), selection model (Andrews &

Kasy, 2019) and more. The last category includes the methods allowing for endogeneity:

FAT-PET with instrumental variable, p-uniform* method, and Caliper test. As a result,

only some of the tests yield significant estimates of publication bias. Nevertheless, these

significant estimates imply only mild evidence of publication bias. Such a result is in

line with Chu et al. (2020). Apart from the detection of publication bias, these methods

estimate the effect beyond bias. The estimate is statistically significant for almost all

of the methods ranging from −0.187 to −0.440 which can be interpreted as face masks

being effective in reducing the risk of Covid-19 infection by 18.7% to 44%. In contrast,

Chu et al. (2020) finds the immense protective effect of face masks. On the other hand,

Jefferson et al. (2023) estimates the protective effect of masks to be small to none.

In the second part of the paper, we focus on model averaging to examine the hetero-

geneity. We perform Bayesian and Frequentist model averaging with different priors. The

purpose of implementing the averaging method is to identify the important variables in-

fluencing the effect of face masks on Covid-19 transmission. 18 out of 26 eligible variables

were used for the averaging. We find the following variables to have a positive effect on the

risk of transmission associated with mask-wearing (decreasing the effectiveness of masks):

the temperature, geographical latitude, panel data structure, risk ratio estimate type,

healthcare set-up, standard error and age. Performing aerosol-generating procedures has

a negative effect on risk (increasing the effectiveness of masks). Unfortunately, we cannot

compare these results to the results of other authors, since they use different designs for

their meta-analyses and do not evaluate the heterogeneity and its drivers in greater detail.
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Nevertheless, the results are in line with what we expect to find. In addition, performed

robustness checks yield very similar outcomes. As a bottom line of this meta-analysis, we

derive the implied estimates representing the effect of prominent studies after correcting

for publication bias and misspecifications. The implied estimates range from −0.129 to

−0.157. This means that the masks reduce the risk of transmission by 12.9% to 15.7%

for the set-ups of these studies.

Lastly, we present some drawbacks. Despite including 44 primary studies in the meta-

analysis, we can collect only above 250 estimates. In addition, we are not able to collect

specific controls included in the models of primary studies. This issue is caused by the

low transparency of medical studies. We at least collect dummy variables for policy

and personal characteristics controls. Nevertheless, the two dummy variables are not

statistically significant.
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A Details of literature search

Figure 6: PRISMA flow diagram
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Note: The following query was used to search the studies in the Google Scholar database.
(“SARS-CoV-2” OR “2019-nCoV” OR “coronavirus” OR “COVID-19”) respirator transmission
(observational OR descriptive OR case-control) face mask respirator epidemiological -meta. The
search was performed on the 2nd of February. The studies were examined based on the
abstract, brief overview of the study and/or quick inspection of the methods and results
section. The search was restricted to include only studies since 2019. The diagram was
created based on the template by Page et al. (2021). PRISMA = Preferred Reporting Items
for Systematic Reviews and Meta-Analyses
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Table 7: Studies identified for analysis

Author (year)

Abaluck et al. (2022) Khalil et al. (2020)
Akinbami et al. (2020) Li et al. (2021)
Andrejko et al. (2022) Lio et al. (2021)
Budzyn et al. (2021) Loeb et al. (2022)
Bundgaard et al. (2021) Maltezou et al. (2020)
Davido et al. (2021) Martischang et al. (2022)
Dörr et al. (2022) Mitze et al. (2020)
Doung-Ngern et al. (2020) Nelson et al. (2021)
Fawcett et al. (2023) Nguyen et al. (2020)
Fletcher et al. (2022) Payne et al. (2020)
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B Correlation coefficients table

Figure 7: Correlation table for all eligible variables

Note: The figure shows the correlation coefficients for all variables eligible for BMA, only
18 of these 27 variables were selected for the final model.

37



 

IES Working Paper Series 
 

2024 
1. Nino Buliskeria, Jaromir Baxa, Tomáš Šestořád: Uncertain Trends in Economic 

Policy Uncertainty 
2. Martina Lušková: The Effect of Face Masks on Covid Transmission: A Meta-

Analysis 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All papers can be downloaded at: http://ies.fsv.cuni.cz • 

 

 
Univerzita Karlova v Praze, Fakulta sociálních věd 

Institut ekonomických studií [UK FSV – IES]  Praha 1, Opletalova 26 
E-mail : ies@fsv.cuni.cz       http://ies.fsv.cuni.cz 

http://ies.fsv.cuni.cz/
mailto:IES@Mbox.FSV.CUNI.CZ

	wp_2024_02_B
	wp_2024_02_C
	wp_2024_02_D
	Introduction
	Data
	Publication Bias
	Heterogeneity
	The implied estimate
	Conclusion
	Details of literature search
	Correlation coefficients table

	wp_2024_02_E

