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Abstract: 
Financial-macroeconomic agent-based models offer a promising avenue for 
understanding complex economic interactions, but their use is hindered by 
challenging empirical estimation. Our paper addresses this gap by constructing a 
stylized integrated model and estimating its core parameters using US data from 
1954 to 2022. To tackle econometric obstacles, including mixed data frequencies, we 
adapt the simulated method of moments. We then focus on three key interaction 
channels. The stock market influences the real sector through the wealth effect, 
which boosts current consumption, and the cost effect, which lowers financing costs 
for firms. Conversely, the real economy impacts the stock market via the price 
misperception effect, where economic conditions help approximate the fundamental 
value of stocks. Our results provide strong statistical support for all three channels, 
offering novel empirical insights into critical dynamics between the two sectors of 
the economy. 
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1. Introduction

The aftermath of the 2007–2008 global financial crisis highlighted the limitations of tradi-

tional economic models in capturing the interconnectedness between the financial and real sectors

(Battiston et al., 2016). The major lessons gained for the economic discipline emphasize the con-

sequences of the financialization of the real economy and the significance of maintaining financial

stability for broader economic progress (Farmer and Foley, 2009; Gatti et al., 2010). Despite ef-

forts to integrate financial dynamics into macroeconomics, as vigorously advocated by Krugman

(2009), challenges persist in bridging the gap between theoretical models and empirical estimation,

especially within the field of agent-based models (ABMs).

Traditionally, economic analysis has often treated the financial and real sectors in isolation.

Neither early efforts to integrate financial dynamics into macroeconomics, such as those by Holm-

strom and Tirole (1997) and Bernanke et al. (1999), nor the initial responses to the crisis, such as

Gertler and Kiyotaki (2010) and Castelnuovo and Nisticò (2010), were able to reverse the overall

trend of separating finance and macroeconomic research.

The progress in agent-based modeling of financial and economic systems followed a parallel

trajectory. Despite the global financial crisis highlighting the necessity of integrating the financial

and real sectors of the economy, these two branches remain rather isolated.1 However, the need

to incorporate financial realities into agent-based macroeconomics has become increasingly clear.

While there have been notable modeling achievements like the outcomes of the EURACE project

(Deissenberg et al., 2008; Cincotti et al., 2010), the empirical estimation of financial-macroeconomic

ABMs remains largely unexplored.

Our paper addresses this gap by focusing on the econometric issues inherent in estimating

integrated ABMs. To be more specific, we seek to: a) construct a stylized integrated financial-

macroeconomic model based on recent ABM frameworks; b) fine-tune its coefficients based on the

latest empirical research; c) adapt the simulated method of moments (SMM) to deal with mixed

data frequencies that the two integrated sectors typically operate at; and d) empirically identify

the parameters representing interaction channels between the stock market and the real economy.

Despite progress in the empirical validation of ABMs (Guerini and Moneta, 2017; Lamperti,

2018a,b; Fagiolo et al., 2019; Seri et al., 2021; Martinoli et al., 2022), quantifying empirical relation-

ships remains the main challenge in the field. Traditional econometric techniques such as ordinary

least squares (OLS) or maximum likelihood estimator (MLE) usually face fundamental obstacles.

The main issues stem from model complexity, which is characterized by strong nonlinearities due

to agent interactions and heuristic switching. Theoretical studies are often infeasible because there

are no analytical solutions for the models, and the objective function for likelihood-based estima-

1See recent excellent surveys on financial and macroeconomic ABMs by Franke and Westerhoff (2017); Dawid and
Delli Gatti (2018); Dieci and He (2018); Dilaver et al. (2018); Lux and Zwinkels (2018); Hommes (2021); Axtell and
Farmer (2022).
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tion cannot be represented in a closed form. These practical limitations make it much harder to

test statistical hypotheses and choose between different models of the same economic reality. As a

result, using ABMs to guide economic decisions and formulate real-world policies becomes signif-

icantly restricted. Another issue in this particular study is that macroeconomic models typically

use quarterly or annual data, while financial models usually operate on a daily basis.

To overcome these challenges, we employ the SMM estimation approach. Its straightforward

implementation, flexibility, and lack of unrealistic theoretical assumptions have made it a popular

choice not only in empirical financial studies (Lux and Zwinkels, 2018) but also, more recently, in the

domain of macroeconomic ABMs (Franke et al., 2015; Jang and Sacht, 2016, 2021). Importantly,

we modify this optimization technique to deal with different data frequencies. We do this by

separately evaluating the moments of macroeconomic and financial time series and then ultimately

aggregating them in the optimization objective function.

In a nutshell, while integrated ABMs hold promise for explaining complex economic phe-

nomena, addressing related econometric issues is crucial for their effective utilization in guiding

economic decisions. Our paper contributes to this endeavor by offering insights into their empirical

estimation and providing a methodological foundation for future research in this area.

The paper is structured as follows. The next Section 2 reviews the key methodological liter-

ature, and Section 3 presents the integrated financial-macroeconomic model and discusses baseline

parameterization. Details of the implementation of the SMM are described in Section 4, and the

accompanying Section 5 presents empirical datasets used for estimation. Following that, Section 6

summarizes the technical setup, and Section 7 reports and interprets the key empirical findings.

Finally, implications and potential directions for future investigation, together with a concise con-

clusion, are summarized in the Section 8. Additional details are provided in the Appendix.

2. Related literature

Integrating the financial and real sectors in economic modeling represented a major challenge

in the past. Some early works, such as those by Holmstrom and Tirole (1997); Kiyotaki and Moore

(1997); Bernanke et al. (1999); Bernanke and Gertler (2000), attempted to incorporate financial

frictions into macroeconomic models. These studies extended traditional frameworks by including

elements like transaction fees, credit restrictions, asset price misalignments, or even a basic credit

market between companies and banks. However, these additions that make sense in theory usually

increased the complexity of the original dynamic stochastic general equilibrium (DSGE) models

and made their econometric analysis and empirical validation more difficult (Christensen and Dib,

2008; Gallegati et al., 2019).

In response to the financial crisis, there was a renewed interest in understanding the in-

terplay between financial markets and the real economy. Works by Gertler and Kiyotaki (2010),

Castelnuovo and Nisticò (2010), and Brunnermeier and Sannikov (2014) focused on how financial
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phenomena influence the real sector and vice versa. However, despite these efforts, the overall

trend of separating finance and macroeconomics persisted.

In the field of ABMs, the outcomes of the EURACE project stand out. It resulted in a

large-scale agent-based model and simulator of the European economy that includes credit and

financial markets (Deissenberg et al., 2008; Cincotti et al., 2010; Raberto et al., 2012; Dawid et al.,

2014, 2016). Next, the work of Delli Gatti et al. (2010) introduces a simple credit market between

firms and banks in a macroeconomic ABM to study the financial accelerator phenomenon. This

model is further extended by Riccetti et al. (2013, 2016), who allow for multiple credit links and

debt structures spanning several periods and examine the impact of dividend distribution on the

state of the financial system. Proaño (2011) analyzes the stability of a two-country macroeconomic

system combined with an FX market populated by boundedly rational traders. An agent-based

Keynesian model augmented with credit is constructed by Dosi et al. (2013) to model the banking

sector and lending conditions, and the series of contributions by Russo et al. (2014); Riccetti

et al. (2015); Russo et al. (2016) develop a microfounded macroeconomic model consisting of

heterogeneous individuals, households, firms, and banks interacting through decentralized matching

mechanisms. Other ways to connect banks and businesses are suggested in Assenza et al. (2015);

Caiani et al. (2016). The first authors build on the Gatti et al. (2011) macroeconomic agent-based

framework with capital and credit, while the other authors create a fully decentralized agent-

based stock-flow-consistent model that connects the real and financial economies. Grauwe and

Macchiarelli (2015); Macchiarelli and De Grauwe (2019) bring another modeling approach that

is, to some extent, close to our contribution. It extends the behavioral macroeconomic model

developed by De Grauwe (2012a) by including the banking industry and the real estate sector,

consisting of financial intermediaries gathering deposits from customers and lending them to firms

or providing secured housing loans. As the latest from our review, Reissl (2021) constructs a

hybrid macroeconomic model that incorporates both the agent-based banking sector and stock-

flow consistency.

The pioneers in integrating stylized financial and macroeconomic agent-based frameworks in

a comprehensive microfounded manner are, nevertheless, Lengnick and Wohltmann (2013, 2016),

whose theoretical contribution we closely follow in our empirical study. These authors build on

the work of Westerhoff (2012); Naimzada and Pireddu (2014), who used an ABM to model the

financial system and the standard Keynesian income-expenditure model for the real sector. This

approach yields interconnected models that are simple and analytically tractable; however, they

lack microfoundations for the real economy. Another inspiration influenced by the agent-based fi-

nancial literature comes from Kontonikas and Ioannidis (2005); Kontonikas and Montagnoli (2006);

Bask (2012), where nonrational heterogeneous heuristics governs the dynamics of the financial side

of the economy, but the expectation formation for the macroeconomic part of the model is derived

from the rational expectation hypothesis. Nevertheless, to the best of our knowledge, no studies

indicate how stylized heterogeneous ABMs interconnecting the financial and macroeconomic sec-
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tors may be empirically estimated using current econometric approaches. There are a few notable

exceptions, such as strongly methodologically oriented working papers by Barde and van der Hoog

(2017); Barde (2022). However, these papers focus on large-scale simulation-based object-oriented

systems (Dawid et al., 2016; Caiani et al., 2016) rather than heterogeneous agent-based systems of

differential equations.

Finally, while alternative estimation techniques to the SMM exist, their application to ABMs

remains limited. Most efforts have been made in the field of Bayesian inference (Grazzini et al.,

2017; Deák et al., 2017; Delli Gatti and Grazzini, 2020; Özden, 2021; Barde, 2022; Dyer et al., 2022;

Fischer, 2022; Lux, 2022; Platt, 2022), the sequential Monte Carlo (SMC) by Lux (2018); Zhang

et al. (2023), the approximate Bayesian computation (ABC) by Lux (2023a), or the simulated

maximum likelihood estimator (SMLE) by Kukacka and Barunik (2017) and Kukacka and Sacht

(2023). These methods mostly depend on a numerical approximation of the likelihood function,

which must be evaluated at every point in time with empirical data. This makes their use for mixed

data sampling datasets complicated compared to a straightforward implementation of the SMM.

Furthermore, the mixed data sampling (MIDAS) regression models, proposed by Ghysels et al.

(2004, 2007), also address the problem of different data frequencies. Regrettably, this methodology

was initially designed for linear models and not for complex ABMs. Although there have been

proposals for nonlinear versions of the estimator (Andreou et al., 2010), we are not aware of any

successful application of the MIDAS methodology in the field of the econometrics of ABMs.

In conclusion, while ABMs have achieved historical successes in explaining numerous com-

plex economic phenomena, the limitations in their empirical estimation still hinder their effective

utilization as artificial labs for policymakers and regulators.

3. Integrated model

The financial-macroeconomic integrated model is based on two prominent lines of agent-

based economic literature. The macroeconomic framework follows the approach of behavioral

heuristics switching macroeconomic modeling based on a three-equation New-Keynesian model

(NKM), as proposed by De Grauwe (2010, 2011, 2012a); De Grauwe and Ji (2019, 2020). Various

versions of the model setup have also been suggested, e.g., by Branch and McGough (2009, 2010);

Massaro (2013); Di Bartolomeo et al. (2016). It further incorporates microfounded decision-making

heuristics derived from laboratory experiments conducted originally by Anufriev and Hommes

(2012), introduced to behavioral macroeconomics by Hommes et al. (2019). Recently, researchers

have conducted the first empirical examinations of these modeling frameworks, such as those done

by Jang and Sacht (2016); Deák et al. (2017); Özden (2021); Jang and Sacht (2021); Kukacka and

Sacht (2023); Zhang et al. (2023), some of which are used to parameterize our integrated model.

Second, the financial aspect of the economy is represented by the influential asset-pricing

ABM developed by Franke and Westerhoff (2011, 2012), whose dynamics are based on repeated
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interactions between fundamental traders and speculators, who are also guided by an evolutionary

heuristic switching mechanism. In recent years, the model has become a prominent reference for

various empirical studies, as evidenced by investigations carried out in Franke and Westerhoff

(2016); Lux (2022); Platt (2022); Zila and Kukacka (2023). Consequently, its characteristics are

well-known within the research community. The establishment of reciprocal interaction channels

between the two sectors of the economy is motivated by the recent theoretical contributions, as

summarized in Lengnick and Wohltmann (2013, 2016); Cho and Jang (2019).

3.1. Heuristic switching macroeconomic model

The macroeconomic aspect of the economy is depicted using the three-equation, purely

forward-looking form of the baseline NKM (Gaĺı, 2015). This framework, while markedly simpli-

fied, is considered a realistic and influential model that has earned a reputation as the ‘empirical

workhorse’ (Blanchard and Gaĺı, 2007) of macroeconomic research and the prevailing paradigm

in macroeconomics throughout recent decades. Renowned for its realistic assumptions and robust

theoretical foundations rooted in individual optimization, this model possesses notable policy rel-

evance. Furthermore, it exhibits a strong capability to fit real-world economic data and explain or

predict macroeconomic phenomena. The model specification exactly follows Kukacka and Sacht

(2023), while already being augmented by the interaction channels presented below in Subsec-

tion 3.1.1:

yq = Ẽy,qyq+1 − τ(rq − Ẽπ,qπq+1) + c1Ẽ∆s−π,q(∆sq+1 − πq+1) + εy,q (1)

πq = νẼπ,qπq+1 + κyq − c2sq + επ,q (2)

rq = ϕyyq + ϕππq + εr,q, (3)

where Ẽ{y,π,∆s−π},q are the bounded rationality (BR) expectations operators and sq represents the

quarterly value of stock prices, both of which are also explicitly defined below in Subsection 3.1.2

and Subsection 3.1.1, respectively. For microfoundations of NKMs under BR expectations, see

Branch and McGough (2009); Massaro (2013); Hommes et al. (2019).

The q subscript indicates that the model has a quarterly frequency. The dynamic IS curve

(1) represents the demand side of the economy. It is derived from the Euler equation, i.e., intertem-

poral utility maximization via optimization of consumption and savings to achieve consumption

smoothing. The parameter τ ≥ 0 is the inverse intertemporal elasticity of substitution in con-

sumer behavior. The equation (2) represents the supply side. It stands for the New Keynesian

Phillips curve, which demonstrates how the (log) output gap (yq) dynamics affect the (log) inflation

rate deviation from its target (πq). This relationship arises from the assumptions of monopolistic

competition and Calvo-type nominal price rigidity. The parameter ν denotes the discount factor,

which must satisfy the condition 0 < ν < 1, and the parameter κ ≥ 0 determines the slope of

the New Keynesian Phillips curve, i.e., the impact of the output gap dynamics on the inflation
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rate fluctuation. The monetary authority is assumed to respond immediately to current changes

in output (ϕy ≥ 0) and inflation (ϕπ ≥ 0) and sets the nominal (log) interest rate deviation from

its target (rq) based on a straightforward Taylor-type monetary policy rule (3). From a technical

standpoint, the log-linearization process around the steady state implies that the targeted values

for inflation and the nominal interest rate coincide with the zero solution of the NKM. The model

further assumes that random shocks ε{y,π,r},q, which are independently and identically distributed

with an average of zero and variances σ2{y,π,r}, affect the external driving forces in the endogenous

macroeconomic variables. The state-space representation of the forward-looking NKM is outlined

in Appendix A. The forward-looking form of the model does not consider concepts such as habit

formation, price indexation, and interest rate smoothing that lead to intrinsic persistence in the

variables observed in real-world data. Because of BR expectations, the model variables’ inertia is

guaranteed endogenously, even if there are no autocorrelated shocks. The application of backward-

looking behavioral heuristics explained in Subsection 3.1.2 thus makes such simplification entirely

acceptable.

3.1.1. Channels of interaction: the wealth and cost effects

The interaction channels between the financial and macroeconomic sectors of the economy

adhere closely to the formalizations proposed by Lengnick and Wohltmann (2013, 2016). As the

models of the two sectors are typically designed to operate at different frequencies, namely daily

and quarterly, their integration is not straightforward. The authors suggest maintaining the time

scales of both modeling approaches while assuming that announcements from the real sector,

such as GDP nowcasts, FOCM announcements, or macroeconomic experts’ forecasts, only have an

aggregate impact on financial market agents once a quarter. Conversely, the impact of the financial

system on the macroeconomy is represented by incorporating an aggregated quarterly value of the

nominal stock price, denoted as sq, to both the dynamic IS curve (1) and the New Keynesian

Phillips curve (2):

sq =
1

64

64q∑
t=64(q−1)+1

pt, (4)

where pt is the stock price value of the overall financial sector in day t, as defined below in (11).

The quarterly value of stock prices is thus calculated by taking the average stock price value over

an assumed period of 64 workdays leading up to the publication of macroeconomic statistics for

the current quarter. Two interaction parameters, c1 ≥ 0 and c2 ≥, represent the influence of the

‘wealth effect’ (Kontonikas and Montagnoli, 2006; Bask, 2012; Westerhoff, 2012; Naimzada and

Pireddu, 2013) and the ‘cost effect’ (Bernanke and Gertler, 2000; Lengnick and Wohltmann, 2013;

Cho and Jang, 2019) of stock prices, respectively.

The wealth effect is introduced via a new term, Ẽ∆s−π,q(∆sq+1 − πq+1), in the dynamic

IS curve (1) based on the following rationale: when households expect future real stock prices to

rise, future stock demand is anticipated to decrease. As a result, future consumption has a lower
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marginal utility than current consumption. To maintain a consistent level of marginal utility of

consumption across subsequent quarters, there is an increase in contemporaneous consumption,

contributing to an increased current output gap (Lengnick and Wohltmann, 2016). The cost effect

is then introduced by simply adding the quarterly value of the stock price, sq, to the New Key-

nesian Phillips curve (2). The reasoning beyond this extension follows this line of argumentation:

increased prices of financial assets owned by companies as collateral enhance their ability to repay

debts, providing them access to less expensive financing due to higher creditworthiness. Because

the majority of firms rely heavily on credit, asset prices and firms’ marginal real costs of produc-

tion are inversely related (Lengnick and Wohltmann, 2013) as decreased production costs directly

translate to consumer prices. We refer the interested reader to Lengnick and Wohltmann (2016)

and Bernanke and Gertler (2000) for details on the microfoundations of the extended IS curve and

the New Keynesian Phillips curve, respectively.

3.1.2. Behavioral heuristics

The BR expectations formation operators Ẽ{y,π,∆s−π},q adopt the modeling approach sug-

gested by Hommes et al. (2019) and examined using US macroeconomic data by Kukacka and

Sacht (2023), whereas parameter homogeneity is assumed in line with the standard specification

and utilization of New-Keynesian-types of models. The empirical microfoundation of behavioral

‘rules-of-thumb’ defined below in (5) to (7) is examined in detail in Anufriev and Hommes (2012,

pp. 45–46) within an asset-pricing framework. Exploiting straightforward behavioral rules is not

considered irrational within this context; instead, it constitutes an optimal, boundedly rational

approach for humans when addressing overly complex tasks under constraints such as limited in-

formation or time, alongside the existence of many parallel economic decisions. De Grauwe (2012b,

pg. 29) and De Grauwe and Ji (2019, pg. 28) even ‘redefine’ economic agents’ rationality following

the concept of bounded rationality (Simon, 1955; Tversky and Kahneman, 1974) in the sense that

“using heuristics is a rational response of agents who are aware of their limited capacity to under-

stand the world” and that “agents in the model are rational, not in the sense of having rational

expectations, [but because] they learn from their mistakes.”

Hommes et al. (2019); Assenza et al. (2021) further confirm these findings based on their

own macroeconomic setup, where all three types of heuristics, as defined below by (5) to (7), are

supported by experimental evidence:

ẼADAx,q xq+1 = ηxq−1 + (1− η)ẼADAx,q xq, (5)

ẼTRx,q xq+1 = xq−1 + ι(xq−1 − xq−2), (6)

ẼLAAx,q xq+1 = µ(xavq−1 + xq−1) + (xq−1 − xq−2). (7)

The weighted combination of the prior actual value in x and agents’ historical prediction,

ẼADAx,q−1xq, where 0 ≤ η ≤ 1, determines the anticipation of a future outcome according to the
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adaptive (ADA) heuristic (5). When η equals 1, this expression represents a static/näıve method

of forming expectations. For the trend-following (TR) heuristic (6), the past realization is taken into

account, and the forecasting rule aligns with the direction of the most recent change in x indicated

by the term (xq−1 − xq−2). The parameter of extrapolation ι ≥ 0 captures the specific patterns in

the dynamics of the variable. Next, in a parametrized ‘learning anchoring and adjustment’ (LAA)

heuristic (7), the most recent change in x is extrapolated via an anchoring parameter, µ ≥ 0,

from an anchor established through the summation of the average of all observations up to quarter

q − 1, xavq−1, and the latest available actual value. Finally, adhering to the established practice in

behavioral macroeconomic modeling (De Grauwe and Ji, 2019; Hommes and Lustenhouwer, 2019;

Jump and Levine, 2019; Hommes et al., 2019; De Grauwe and Ji, 2020), we use these heuristics

with regard to the output gap, inflation rate, and real stock price increases expectations, i.e.,

x ∈ {y, π,∆s − π}. We direct the interested reader to Kukacka and Sacht (2023, Footnote 4)

for an outline and discussion on the advantages and drawbacks of more sophisticated expectation

formation concepts. Additionally, see Pfajfar and Žakelj (2014, 2018) for extensive lab-based

evidence that supports the behavioral assumptions of simple forecasting heuristics and Assenza

et al. (2014) for a review of different types of macroeconomics experiments that involve gathering

expectations or forecasts.

3.1.3. Heuristic switching

Consequently, for each of the three forecasted variables, x ∈ {y, π,∆s−π}, economic agents

adaptively switch between the three groups following specific forecast heuristics (5) to (7). The

economic utility of the forecast precision of each heuristic, Ukx,q, k ∈ {ADA,TR,LAA}, is updated
in each period while being standardly defined through squared forecast errors:

Ukx,q = ρUkx,q−1 − (Ekq−2xq−1 − xq−1)
2, (8)

where the memory parameter, 0 ≤ ρ ≤ 1, controls the speed of geometric dilution of the impact of

past squared errors on the current utility of forecast precision.

The multinomial logistic discrete choice approach governs the switching process. In simpler

terms, the heuristic that currently exhibits the highest precision, as indicated by the smallest

squared forecast errors, attracts the largest share of agents. The adaptive switching mechanism

defines those fractions using the output of (8) as:

αkx,q =
exp(γUkx,q)∑3
i=1 exp(γU

k{i}
x,q )

, (9)

where γ ≥ 0 represents the intensity of choice (Brock and Hommes, 1997, 1998; Hommes, 2013) of

macroeconomic forecasters. As γ increases, agents become more inclined to learn from their past

forecast performance, leading to a greater willingness to switch to forecast heuristics with better

precision. Naturally, fractions αkx,t sum to one for each of the three heuristics.
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The model is closed by updating the aggregated forecast for the economy. The aggregation

of the agents’ expectations about the future values of variables x ∈ {y, π,∆s − π} is defined as a

weighted average taking advantage of the output of (9), k ∈ {ADA,TR,LAA}:

Ẽx,qxq+1 =
3∑
i=1

( αk{i}x,q · Ẽk{i}x,q xq+1). (10)

3.2. Financial agent-based model

The financial side of the economy, or simply the stock market, is represented by the asset-

pricing ABM developed by Franke and Westerhoff (2011, 2012). Specifically, we use its empiri-

cally superior DCA-HPM version, where DCA stands for the discrete choice approach (Brock and

Hommes, 1998), while HPM defines the drivers of the switching index, namely ‘herding,’ ‘predispo-

sition,’ and price ‘misalignment;’ see (14) and (15) below. The main presumption is that distinct

types of agents, other than those from the real sector, populate the financial market. Stock mar-

ket trades follow different behavioral heuristics than macroeconomic forecasters, who, in turn, do

not participate in stock trading. The model thus characterizes a market in which two segments

of financial agents, namely fundamentalists and chartists, engage in interactions and, similarly to

macroeconomic agents, adapt to their dynamic environment by switching between the two groups.

Finally, the financial part of the model has to run on a higher-frequency time scale; namely, it has

a daily frequency as indicated by the t subscript.

The price of a market-traded asset is influenced by demand. In particular, a market maker

adjusts the log price pt between consecutive periods by considering the excess demand for the asset.

The adjustment is proportional to the excess demands of fundamentalists (dft ) and chartists (dct),

given by:

pt = pt−1 + υ(nft−1d
f
t−1 + nct−1d

c
t−1). (11)

Here, nft and nct = 1 − nft represent the population shares of fundamentalists and chartists, re-

spectively, and the parameter υ signifies the market maker’s adjustment rate for the asset price.

The trader’s excess demand is determined by one of the following equations based on their current

trading approach:

dft = ψ(p∗ − pt) + εft , εft ∼ N (0, σ2f ), (12)

dct = χ(pt − pt−1) + εct , εct ∼ N (0, σ2c ). (13)

In this context, p∗ stands for the log fundamental value of the asset, with εft and εct representing

the noise terms for fundamentalists and chartists, respectively. The variances of these noise terms

are determined by σ2f and σ2c , while ψ and χ act as the adjustment parameters for demands.

The governing principles for excess demands follow simple behavioral rules commonly found

in the literature. Specifically, the excess demand of fundamentalists responds to the deviation of

the current asset price from its fundamental value. In contrast, the excess demand of chartists is
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driven by the asset’s price change from the previous period to the current period. The adjustments

in population shares of traders are influenced by the index at, indicating the propensity to switch:

at = δ0 + δh(n
f
t − nct) + δm(pt − p∗)2, (14)

nft =
1

1 + exp(−βat−1)
, (15)

where δ0 serves as a predisposition parameter, indicating a general inclination towards one of

the trading rules. The parameter δh ≥ 0 reflects a herding effect, while δm ≥ 0 represents the

impact of price misalignment resulting from deviations from the fundamental value. Similarly to

the macroeconomic segment of the integrated model, β ≥ 0 is the intensity of choice. It is now,

however, specific for asset traders and governs the binomial logistic model (15) that determines the

evolution of population shares of fundamentalists and chartists.

3.2.1. Fundamental value and the misperception effect

The prerequisite for connecting the two parts of the economy is the existence of the concept of

fundamental value in the financial model. This requirement excludes some agent-based approaches

from the list of potential candidates. We strictly adhere to the Lengnick and Wohltmann (2013,

2016) interconnection principle and define:

p∗ := p∗t = hyq−1, q = floor
t− 1

64
, (16)

where the perceived fundamental value of the asset, p∗ from (12), is calculated as a factor of the

macroeconomic output gap yq−1 released at the end of the previous quarter, and the floor operation

rounds down to the nearest integer. The perceived fundamental value thus fluctuates around zero

and updates quarterly based on the recent real economic progress. As such, it deviates from the

assumption of the original model, where the fundamental value is set to zero for simplicity, while

adhering to other financial ABMs, like those by Farmer and Joshi (2002); Alfarano et al. (2008),

where the random walk process often approximates the time-varying fundament.

This impact from the real economy on the financial sector represents the third studied

interaction channel, the so-called price ‘misperception effect’ (Kontonikas and Montagnoli, 2006;

Westerhoff, 2012; De Grauwe and Kaltwasser, 2012; Naimzada and Pireddu, 2013). The intuition

emphasizes the fact that determining the fundamental values of financial assets poses significant

challenges in reality. Fundamentalists are thus assumed not to be aware of the true value, but

their view is skewed toward the most recent actual economic activity. They approximate the

fundamental value by relying on information about recent economic conditions, as represented by

the latest output gap, yq−1. The nonnegativity of the interaction parameter h ≥ 0 ensures that if

output is above (below) its long-term trend, the fundamental price is assumed to be higher (lower)

than its ‘true’ underlying value, and the fundamentalists’ asset demand is adjusted accordingly. In

simple terms, if agents can afford higher consumption, leading to a higher output gap, the demand

11



for stocks also increases.

Crucially, the three interaction channels mutually influence one another in a simultaneous

fashion. For instance, the expectation of a growing stock market positively influences output di-

rectly through the wealth effect in (1) and indirectly through the cost effect in (2) that propagates

to the output equation through the contemporaneous nominal interest rate (3). In turn, growing

output exerts a positive impact on the fundamental value approximation (16) that translates into

traders’ excess demand (12) increasing stock prices (11). Finally, note that Lengnick and Wohlt-

mann (2013) only discuss the impacts of the cost and misperception effects, whereas Lengnick

and Wohltmann (2016) expand the number of interaction channels to four. In addition to the

wealth effect, they incorporate an additional channel that connects the financial traders’ stock

demand to the average households’ macroeconomic demand for stocks. This connection is a crucial

component of their consumer utility maximization problem, which leads to the derivation of their

log-linearized three-equation NKM. However, the implementation of this channel does not align

with our accepted framework; thus, we are unable to incorporate it immediately into the examined

model. There are two aspects to the problem. Our stylized model does not include the households’

stock demand function from the NKM microfoundation framework as defined by Lengnick and

Wohltmann (2016, eq. 4). Expanding the model in this manner would result in inconsistency with

our baseline model parameterization, as outlined in Subsection 3.3, and might have unpredictable

effects on the estimation performance. In technical terms, it would necessitate the inclusion of

three new estimated coefficients and an extra empirical time series. This might compromise the

identification of the three parameters that are now being successfully estimated.

3.3. Baseline model parameterization

The purpose of this paper is to empirically estimate the three new interaction parameters

of the integrated financial-macroeconomic model. These are the fundamental price misperception

effect parameter h in (16), the wealth effect parameters c1 in (1), and the cost effect parameter

c2 in (2). For this purpose, the other coefficients of both model parts must be appropriately

parametrized. We set the coefficient values according to the most recent empirical literature that

estimates the same frameworks individually based on datasets of comparable spans as the one used

in this study.

The complete set of parametrized coefficients is summarized in Table 1. The main parameters

of the heuristics switching macroeconomic model are set according to Kukacka and Sacht (2023,

Table 2, col. B) using US quarterly data from 1954:Q3 to 2019:Q2. Other parameters are fixed in

that study based on empirical results by Jang and Sacht (2021, Table 2, col. EFB). The financial

ABM follows the recent empirical results of Zila and Kukacka (2023, Table 4, col. BSME eff.),

who estimate the Franke and Westerhoff (2012) model using S&P 500 data from 1980-01-02 to

2022-09-08. Again, a few parameters are fixed in that study, following Franke and Westerhoff

(2012); Platt (2022). Moreover, we later introduce robustness checks and sensitivity experiments
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Table 1: Baseline model parameterization

Heuristics switching macroeconomic model
τ κ ϕy ϕπ η ι µ γ ν ρ σy σπ σr

0.371 0.213 0.05 1.23 0.21 0.00 0.38 1.49 0.99 0 0.543 0.24 0.151

Financial agent-based model
ψ χ σf σc δ0 δh δm υ β p1

0.02 2.01 0.835 4.02 -0.182 2.14 13.12 0.01 1 0

Note: Parameterization of the integrated model is based on Kukacka and Sacht (2023, Table 2, col. B),
Jang and Sacht (2021, Table 2, col. EFB), Franke and Westerhoff (2012), and Platt (2022).

that alter some of the parametrized coefficients or the model structure. The specific modifications

are described within Section 7.

4. Implementation of the simulated method of moments

To empirically identify parameters h, c1, and c2 representing the interaction channels, we em-

ploy the SMM pioneered by McFadden (1989) and Pakes and Pollard (1989). It obtains parameter

estimates by conducting multiple model simulations over a wide range of parameter combinations.

In the agent-based modeling literature, SMM often appears as a preferred estimation approach

because of its desirable properties of asymptotic normality and consistency (Lee and Ingram, 1991;

Duffie and Singleton, 1993) combined with practical features such as straightforward implemen-

tation, flexibility, and realistic assumptions. To leverage this method, all that is required is a

simulation model generating time series corresponding to a specific set of parameter values. Em-

pirical estimates are then derived by minimizing the discrepancy between a chosen set of moments

from simulated data that approximate the population values and the sample moments observed

from real-world data, such as the sample mean, variance, or correlations between variables. This

makes the approach broadly applicable across a spectrum of potential econometric scenarios. Im-

portantly, the SMM also plays a crucial role in addressing the challenge arising from different

frequencies between the two components of the model, as explained in the subsequent detailed

discussion.

4.1. Formal definition

Assume that we have a stochastic model f whose parameters θ we want to estimate for an

empirical time series e = {et}
Temp

t=1 . Furthermore, assume that we can draw a simulated sample

f(θ) = zθ = {zt}Tsimt=1 of length Tsim ≥ Temp from f for a given set of parameters θ. As a

measure of closeness between the empirical and simulated time series, we can compute the distance

between sample counterparts of D statistical moments of choice, called ‘statistics’, describing their

distributions. For instance, the sample average is typically used as the sample counterpart for the

expected value. To achieve our goal, we find θ minimizing the overall distance between the D

statistics calculated for the empirical and simulated time series.
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Each of the D statistics can be represented as a function md, d ∈ {1, . . . , D}, which takes a

time series as an input and returns the statistic’s value. For simulated time series, variability of

the calculated statistics can be reduced by independently generating S simulated time series zθs ,

s ∈ {1, . . . , S}, and taking the average over the statistics as 1
S

∑S
s=1md(z

θ
s ). Then, we can organize

the D statistics computed in this manner into a couple of vectors memp = [m1(e), . . . ,mD(e)] and

msim(θ) = [ 1S
∑S

s=1m1(z
θ
s ), . . . ,

1
S

∑S
s=1mD(z

θ
s )]. Finally, we can define an objective function J

computing the distance between the two vectors as follows:

J(θ) = h(θ)TWh(θ), (17)

where h(θ) = memp−msim(θ) and W ∈ RD×D is a positive definite weighting matrix. The SMM

estimator θ̂ is found by minimizing the objective function:

θ̂ = argmin
θ

J(θ), (18)

where θ ∈ Θ, Θ is the parameter space of the search.

4.2. Weighting matrix

The weighting matrix W can be calculated using a number of different approaches. The

general rule, however, is to assign more importance to moments that remain stable across inde-

pendent realizations of the true multivariate time series process. Ideally, the weights should also

reflect correlations between moments to take into account as many distinct characteristics of the

time series as possible and avoid placing excessive focus on potentially overlapping information.

Consequently, the appropriate and most common choice is to use Σ, the covariance matrix of

moments, and set W = Σ−1.

To estimate the covariance matrix Σ, we employ a block bootstrap approach introduced by

Franke and Westerhoff (2012) and refined by Zila and Kukacka (2023) by allowing block overlaps

to address small sample bias issues of the original procedure. Specifically, we split the empirical

time series into Tsim−BL+1 overlapping blocks consisting of BL observations. Then, we randomly

sample BN of these blocks and concatenate them to create a new bootstrapped time series b =

{bt}Tbst=1, where Tbs = BN × BL. We repeat this process a total of BB times to produce a stack

of bootstrapped time series bi, i ∈ {1, . . . , BB}, that can be used to generate moment vectors

mbs
i = [m1(bi), . . . ,mD(bi)]. Then, we estimate Σ as follows:

Σ̂ =
1

BB

BB∑
i=1

(mbs
i −m)(mbs

i −m)⊤, (19)

where m = 1
BB

∑BB
i=1m

bs
i . Finally, we take the inverse of Σ̂ and use it as the weighting matrix W

in the objective function J (17).
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4.3. Moment conditions

The integrated financial-macroeconomic model generates a total of four time series, including

the output gap, y = {yq}Qq=1, inflation rate, π = {πq}Qq=1, nominal interest rate, r = {rq}Qq=1,

and the price, p = {pt}Tt=1 from which we calculate log returns that enter the SMM estimation

routine. Crucially, the utilization of the SMM in this multivariate context, featuring time series

of inconsistent lengths, introduces no additional complexity to the optimization problem. This is

because the moments of financial and macroeconomic time series can be evaluated separately and

ultimately aggregated in the optimization objective function. The sole additional requirement is

that prior to the method’s application, it is necessary to decide which of the md functions will

be applied to which of the time series. Additionally, some of the compared statistics may now

accept multiple different time series as input, for example, to calculate the sample counterpart of

the covariance of two series.

In total, we use D = 100 moment conditions in our application of the SMM. The conditions

used cover 78 and 22 moments for macroeconomic and financial data, respectively. For macroeco-

nomic data, we follow Franke et al. (2015); Jang and Sacht (2016, 2021) and utilize lagged auto-

and cross-covariances whose sample counterparts are calculated as follows:

m(l,X, Y ) =
1

Q

Q−l∑
q=1

(Xq − X̄)(Yq+l − Ȳ ), (20)

where l is the lag of choice, X and Y are random variables, and X̄ and Ȳ are their sample

averages. Importantly, the statistic is order-dependent for cross-covariances whenever l ̸= 0. We

consider auto-covariances with lags l ∈ {0, 1, . . . , 8} for the three macroeconomic time series y,

π, and r, adding up to 3 × 9 = 27 moment conditions. For cross-covariances, we consider all six

permutations under the same lags, adding up to the remaining 3× 9 + 3× 8 = 51 macroeconomic

moment conditions
(
since, for example, m(0, r, π) = m(0, π, r)

)
.

For financial data, we follow Zila and Kukacka (2023) and use the unconditional second and

fourth moments of raw returns, autocorrelations at lags l ∈ {1, 2, 3} of raw returns, the uncondi-

tional first moment of absolute returns, the Hill estimator of the tail index of absolute raw returns

using 2.5% and 5% of extreme observations, autocorrelations at lags l ∈ {1, 5, 10, 15, 20, 25, 50, 100}
of absolute returns, and autocorrelations at lags l ∈ {1, 5, 10, 15, 20, 25} of squared returns. Ac-

cording to Zila and Kukacka (2023), even a small number of carefully chosen moments can result

in superior SMM estimation performance. However, they also conclude that the accuracy of the

method does not markedly deteriorate as the number of moments increases, as long as the weights

in matrix W are accurately estimated. This allows for a cautious approach of adopting an entire set

of 22 moments instead of the specific sets proposed for the original model, taking into account that

incorporating the Franke and Westerhoff (2012) model into our financial-macroeconomic framework

can markedly affect its dynamics.
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4.4. Block bootstrap approach for mixed data sampling

When generating bootstrapped time series in order to estimate the covariance matrix Σ,

we draw BN random integers from ⟨BL, Q⟩. This represents a random sampling of BN quarterly

observations from the macroeconomic data. For each random draw R, we take the corresponding

blocks y(R−BL+1):R, π(R−BL+1):R, and r(R−BL+1):R from our empirical macroeconomic time series

and concatenate the drawn blocks to form bootstrapped time series. For the financial time series,

we take the corresponding blocks of observations by considering the subset of data starting from

the date corresponding to the quarterly observation at R − BL until the last day right before the

quarterly observation at R. This way, the bootstrapped macroeconomic time series always have

the same length, while the length of the bootstrapped financial time series can vary depending on

the actual number of work days in the BL quarters prior to the drawn quarterly observation.

Having generated bootstrapped time series, we split the covariance matrix estimation prob-

lem into two subtasks, one for macroeconomic moment conditions (78 × 78 matrix Σ̂
−1

M ) and the

other for financial moment conditions (22× 22 matrix Σ̂
−1

F ). Due to the large size of the macroe-

conomic covariance matrix, we follow Franke et al. (2015); Jang and Sacht (2021) and especially

a comprehensive discussion in Jang and Sacht (2016) and estimate only its diagonal elements, i.e.,

variances of the macroeconomic moment conditions, using the block bootstrap approach described

above. At the same time, we estimate the full matrix for financial moment conditions. Subse-

quently, we concatenate the two estimated matrices in order to form a full 100× 100 Σ̂ matrix.

5. Data

Quarterly macroeconomic data for the United States are collected from the Federal Reserve

Bank of St. Louis website: fred.stlouisfed.org [database accessed on 2022-09-23]. The dataset

encompasses the period from 1954:Q3 to 2022:Q2, i.e., a total of 272 quarterly observations. Out-

put is derived from seasonally adjusted real GDP based on billions of chained 2012 USD, while

inflation is quantified using the seasonally adjusted CPI. The one-sided Hodrick-Prescott filter with

a standard smoothing parameter of λ = 1, 600 is used to estimate the trend for the output time

series data to obtain the gap format, as shown in Stock and Watson (1999). We also add robust-

ness checks later using output gap data calculated with much higher smoothing parameters, as

suggested by Franke et al. (2023). The two utilized smoothing values are λDT ;ST = {18736; 12016}
and the results are presented in Subsection 7.1. Finally, the short-term nominal interest rate is

represented by the effective federal funds rate. The inflation and interest rate data are essentially

demeaned to match the theoretical log-linearized specification of the NKM model. This is similar

to the Hodrick-Prescott detrending of the output data.

Regarding financial data, we follow the standard practice and utilize the log returns of the

S&P 500 stock market index. Our dataset spans from 1954-07-01 to 2022-06-30, i.e., a total of

17119 daily observations [database accessed on 2022-11-24]. The specific starting and ending points
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of the data span are due to the adjustment of the period to fit along with the macroeconomic data,

according to (16). For downloading the dataset, interested readers are directed to the GitHub

repository.

6. Estimation setup

6.1. Monte Carlo and computational complexity

All computations reported in this paper are implemented in Julia 1.6.1 (Bezanson et al.,

2017) and utilize 300 independent Monte Carlo re-estimations to obtain sample densities of param-

eter estimates. The Monte Carlo approach should not only eliminate the impact of randomness

represented by sequences of random shocks ε{y,π,r},q and noise terms ε{f,c},t but also directly pro-

vide us with confidence intervals for single parameters as approximated by confidence intervals of

the sample estimates as discussed in Franke and Westerhoff (2011, pg. 74) and Franke and West-

erhoff (2016, pg. 24). We execute most of the experiments on a server with a 48-core Intel Xeon

Gold 6126 @ 2.60GHz processor and 400 GB of RAM. Under this configuration, each estimation

procedure with 300 independent runs amounts to approximately 59 compute hours.

6.2. Technical implementation details

We use a warm-up period of 50 quarterly and 3000 daily observations to mitigate any po-

tential biases introduced by the model’s initialization. The observations corresponding to the

warm-up period are discarded whenever a new time series is generated by the simulation model.

When simulating macroeconomic time series, we follow the length of our macroeconomic data, i.e.,

we generate a time series with 272 quarterly observations. When generating financial data, we

follow Lengnick and Wohltmann (2016) in using the assumption that each quarterly observation

should correspond to 64 daily observations, i.e., we generate time series with 272 × 64 = 17408

daily observations. Since the SMM calculates and compares statistics over empirical and simulated

data, any differences in lengths between the two should have no impact. Nevertheless, when faced

with relatively small amounts of empirical data, simulated data can be scaled by a factor to reduce

the variability of the simulated series as done by Franke and Westerhoff (2016) and Chen and Lux

(2018).

The weighting matrix is implemented using the block bootstrap approach as described in Sec-

tion 4 with BB = 5000 bootstrap size. Each bootstrapped time series consists of BN = 40 overlap-

ping blocks of BL = 16 quarterly (and 1024 daily) observations. Simulated moments in the objec-

tive function (17) of the SMM are calculated as averages over S = 100 independent realizations. To

optimize the function, we employ the recommended optimizer :adaptive de rand 1 bin radiuslimited

from the BlackBoxOptim.jl package with 4000 functional evaluations. We restrict the search space

explored by the optimizer to ĥ ∈ ⟨0, 1.5⟩, ĉ1 ∈ ⟨−1, 4⟩, and ĉ2 ∈ ⟨0, 30⟩. The only exception is

experiment F, which dictates expanded bounds for one of the parameters, namely ĉ1 ∈ ⟨−1, 9⟩.
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Table 2: Numerical results of the empirical study

Par./Exp. A B C

ĥ 0.586 0.586 0.589
⟨0, 1.5⟩ (0.492, 0.675) (0.494, 0.677) (0.497, 0.684)
ĉ1 0.309 0.321 0.326

⟨−1, 4⟩ (0.087, 0.578) (0.080, 0.662) (0.083, 0.652)
ĉ2 16.3 16.4 16.3

⟨0, 30⟩ (14.6, 18.2) (14.8, 18.7) (14.8, 18.4)

Note: The constraints for optimization search are given in ⟨⟩
brackets. The sample means based on 300 random runs are
reported as parameter estimates. The 95% confidence inter-
vals of the sample estimates are reported in () parentheses.
The figures are rounded to three valid digits.

7. Empirical analysis

This section showcases the primary findings of our estimation study. Initially, we present and

analyze the empirical estimates of the three model interaction parameters, accompanied by two

further robustness checks. Subsequently, we examine the sensitivity of the estimation outcomes

when certain model coefficients are re-parametrized, or the model structure is slightly modified. In

addition to numerical findings, we depict the estimation output visually.

7.1. Main findings and robustness checks

The estimation results are summarized in Table 2. To the best of our knowledge, our study

provides the first empirical estimates for the three interaction channels in the agent-based modeling

literature. Column A reports the main set of empirical estimates. In Columns B and C, robustness

experiments are shown using output gap data that was calculated with much higher smoothing

parameters, as suggested by Franke et al. (2023), with λDT ;ST = {18736; 12016}. The related

graphical depiction is provided in Figure 1.

The crucial observation is that all three interaction parameters estimated in Table 2, Column

A, are statistically significant at the 95% confidence level. The empirical findings, therefore, provide

strong statistical support in favor of all three interaction channels in our financial-macroeconomic

integrated ABM of the US economy. Furthermore, as observed in Figure 1, Panel (a), the parameter

estimators have narrow densities with generally symmetrical shapes close to a normal distribution

with only modest skewness and slight excess kurtosis (skew
ĥ
based on 300 random runs is 0.059

and ex. kurt
ĥ
= 0.249; skewĉ1 = 0.537, ex. kurtĉ1 = 0.097; skewĉ2 = 0.466, ex. kurtĉ2 = 0.249).

This observation further supports the utilization of the 95% confidence intervals of the sample

estimates as confidence intervals for single parameters as noted in Section 6.

In the financial ABM, the fundamental price misperception effect parameter in (16) is es-

timated to be ĥ = 0.586. We can hardly compare its numerical value to any existing empirical

literature, while its interpretation is straightforward: the stock market participants following the

fundamental trading strategies approximate the fundamental value of the stock market as roughly
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(a) Main results A

(b) Robustness check B: λDT = 18736

(c) Robustness check C: λST = 12016

Figure 1: Densities of the parameter estimates. Note: The black curves depict the kernel density estimates of the
sample densities, while the full and dashed vertical lines represent their means and the 95% confidence intervals of
the sample estimates, respectively. Based on 300 random runs.

59% of the most recently observed output gap. On the macroeconomic side of the integrated

model, the wealth effect parameter c1 in the extended dynamic IS curve (1) is estimated to be

ĉ1 = 0.309. As the interpretation of the numerical values might be difficult in such a complex

nonlinear system of equations, we follow a simplified ceteris paribus way of assessing the effects

known from linear models. The estimated parameter suggests that the current consumption con-

tributing to the output gap indeed reacts positively (negatively) to the expected increase (decrease)

of real stock prices, but these optimistic (pessimistic) expectations only translate to the value of

the actual output gap by circa 31%. In other words, a 10% rise in real stock price is associated

with an approximately 3% increase in the output gap. Next, the cost effect parameter c2 in (2)

is estimated to be ĉ2 = 16.3, suggesting that the current inflation rate indeed reacts negatively to

the current value of stock prices, i.e., that cheaper credit genuinely decreases costs of production,

which directly translates to consumer prices. To some extent, this interaction channel seems to

balance the positive impact of the actual output gap on the inflation rate. Following the elasticity

interpretation logic of the log-linearized NKM, a large estimated value of c2 suggests that even

a slight decrease in the aggregated quarterly value of stock prices results in strong inflationary

pressures via the cost channel.
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Table 3: Sensitivity analysis experiments

Par./Exp. D E F G

ĥ 0.616 0.375 0.400 0.496
⟨0, 1.5⟩ (0.442, 0.893) (0.299, 0.433) (0.345, 0.464) (0.418, 0.580)
ĉ1 2.08 0.979 5.18 0.149

⟨−1, 4 (9)⟩ (0.320, 3.48) (0.630, 1.29) (4.40, 5.95) (0.100, 0.216)
ĉ2 14.7 6.30 20.5 21.7

⟨0, 30⟩ (11.7, 18.4) (5.58, 7.16) (18.7, 22.1) (19.4, 24.0)

Note: The constraints for optimization search are given in ⟨⟩ brackets. The
sample means based on 300 random runs are reported as parameter estimates.
The 95% confidence intervals of the sample estimates are reported in () paren-
theses. The figures are rounded to three valid digits.

Finally, two experiments with different smoothing parameters for the output gap calculation

are presented in Table 2, columns B and C, accompanied by a visual depiction in Figure 1, panels

(b) and (c). The overall finding is that the estimation results are robust when using different

output gap calculation settings. Literally, the estimated parameters and the estimated densities of

the parameter estimators closely resemble the main result based on the commonly used smoothing

parameter λ = 1, 600, and all distributions remain reasonably close to normality based on sample

skewness and kurtosis.

7.2. Sensitivity analysis experiments

We now examine the sensitivity of the estimation outcomes when some model coefficients

are re-parameterized, or when the model structure is slightly modified. The non-estimated coeffi-

cients of the model are parameterized based on the latest empirical literature that estimates those

frameworks separately. Some simplifications were necessary in those papers to make empirical

estimation possible. We incorporate these simplifications also in our integrated model to ensure

its parameterization is as consistent with empirical findings as possible. Nevertheless, given that

we no longer estimate these coefficients in our study, we may loosen some of these simplifications

and evaluate the effect on estimating the interaction parameters of the main interest.

Since the parameters of any model do not exist per se, i.e., inherently on their own, but rather

depend on the model structure or the configuration of other coefficients, it is realistic to anticipate

variations in some estimated values. The emphasis will not be placed on the numerical values

of these modifications but rather on the qualitative distinctions concerning the major estimation

results in Table 2, Column A, and Figure 1, Panel (a).

7.2.1. Coefficient re-parameterization

We first re-parameterize the structural coefficients of the macroeconomic part of the model

in experiment D. These were also varied in Kukacka and Sacht (2023), where the authors face

difficulties in estimating the inverse elasticity of substitution τ in (1) and the slope of the New

Keynesian Phillips curve κ in (2). These two parameters are thus set according to Jang and

Sacht (2021, Table 2, col. EFB) in our baseline model parameterization, and we now also set
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(d) Sensitivity experiment D: ϕy = 0.709, ϕπ = 1.914

(e) Sensitivity experiment E: τ = 0.2, κ = 0.05, ϕy = 0.04, ϕπ = 1.27

(f) Sensitivity experiment F: ρ = 0.7

(g) Sensitivity experiment G: rq = ϕyẼy,qyq+1 + ϕπẼπ,qπq+1 + εr,q

Figure 2: Densities of the parameter estimates. Note: The black curves depict the kernel density estimates of the
sample densities, while the full and dashed vertical lines represent their means and the 95% confidence intervals of
the sample estimates, respectively. Based on 300 random runs.

the Taylor-type monetary policy rule coefficients according to the same paper: ϕy = 0.709, ϕπ =

1.914. Second, in experiment E, we set all four structural parameters of the macroeconomic model

according to Kukacka and Sacht (2023, Table 2, col. C), in which τ and κ follow a ‘plain vanilla’

parameterization by De Grauwe and Ji (2020, pg. 8) while ϕy and ϕπ are estimated (however, very

similarly to the baseline model parameterization): τ = 0.2, κ = 0.05, ϕy = 0.04, ϕπ = 1.27. The

results are presented in Table 3, Columns D and E, and visualized in Figure 2, Panels (d) and (e),

respectively.

The key finding regarding the statistical significance of the interaction parameters remains

unchanged, whereas, as expected, one can observe numerical shifts and qualitative changes in
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the estimation performance under given re-parameterizations. In experiment D, the interaction

parameters h and c2 are estimated comparably to our main results; only the variance of the SMM

estimator increases as demonstrated by wider confidence intervals. Although finding a causal

way of reasoning why modified ϕy = 0.709, ϕπ = 1.914 make it so is tricky in such a nonlinearly

interconnected system, a possible line of explanation might be that stronger dynamics of the Taylor

rule equation (3) under numerically larger monetary policy coefficients can overshadow the model

dynamics necessary for determining interaction channels. Moreover, the wealth effect interaction

parameter is estimated by order of magnitude larger, ĉ1 = 2.08, suggesting that the impact of

stronger dynamics of the nominal interest rate rq, which is plugged into the dynamic IS curve (1)

with the negative −τ coefficient, must be much strongly compensated by the wealth effect that

influences the current output gap positively.

Conversely, experiment E reveals slightly narrower confidence intervals for h and c2 while

both interaction parameters are estimated to be smaller compared to our main results: ĥ = 0.375

and ĉ2 = 6.30. On the other hand, the wealth effect interaction parameter is again estimated to be

considerably larger: ĉ1 = 0.979. A potential causal way of reasoning is the following: a markedly

smaller structural coefficient τ = 0.2 and a larger c1 are both likely to positively influence the

output gap (1). Therefore, a smaller fundamental value misperception effect parameter h for the

stocks’ fundamental value approximation in (16) is necessary to capture the dynamics of data.

Additionally, with a smaller structural coefficient κ = 0.2, a smaller cost effect parameter c2 is

necessary to compensate for the impact of the current output gap in (2). Nonetheless, why the

estimated wealth effect interaction parameter ĉ1 remains large is not straightforward to explain

due to the structure of the baseline NKM in which all three current observables together with

structural coefficients are interconnected in a complex manner.

7.2.2. Structural changes

Next, we examine the impact of two slight modifications to the structure of the macroeco-

nomic component of the integrated model. Our baseline parameterization in Table 1 is based on

setting the memory parameter ρ = 0 in (8) so that the economic utility of the forecast precision

is solely based on the most recent squared forecast error. This simplification allows Kukacka and

Sacht (2023) to identify the intensity of choice of macroeconomic forecasters γ in (9). Since the

memory parameter is now fixed in our study, we can experiment with setting it to ρ = 0.7 according

to calibration in Hommes et al. (2019). Exponentially declining weights of all previous squared

forecast errors then determine the forecast precision. Lastly, we change the Taylor-type monetary

policy rule (3) so that it is no longer based on the current output gap and inflation rate but on

BR expectations of their future realizations. This is consistent with the other two equations in our

forward-looking baseline NKM:

rq = ϕyẼy,qyq+1 + ϕπẼπ,qπq+1 + εr,q. (21)
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The concept of an expectation-based Taylor rule aligns with the behavioral NKM frameworks pro-

posed by authors such as Branch and McGough (2009, 2010); Lengnick and Wohltmann (2013,

2016) and, most recently, Lux (2023b). Lux (2023b) convincingly argues that this approach signifi-

cantly simplifies the system of differential equations that represent the NKM model, as it eliminates

the simultaneous dependence of the nominal interest rate on the current output gap and inflation

rate. Instead, the construction of expectations through the BR heuristics relies on their past values,

which ultimately supports the identification of key model parameters. The results are presented

in Table 3, columns F and G, and visualized in Figure 2, panels (f) and (g), respectively.

Again, the statistical significance of the interaction parameters is not endangered by these

structural changes, while some estimation results are affected markedly. Introducing memory into

the evaluation process of the precision of macroeconomic forecast heuristics in experiment F slightly

decreases the estimate of the fundamental value misperception parameter ĥ = 0.400 and increases

the estimated cost effect parameter ĉ2 = 20.5. All this while maintaining a comparable estimation

uncertainty, as can be seen from the confidence intervals. But it primarily surges up the wealth

effect parameter ĉ1 = 5.18. The expected change of real stock prices thus no longer contributes

partially to the development of the output gap, but its impact is amplified approximately five

times. Therefore, the assumption about how much macroeconomic forecasters look into the past

when evaluating the attractiveness of forecasting rules seems critical for a correct estimation of the

wealth effect.

Intriguingly, under the restructured expectation-based Taylor rule in experiment G, one

observes a similar impact for ĥ = 0.496 ĉ2 = 21.7, while the estimated cost effect parameter

ĉ1 = 0.149 is reduced to approximately half, yet still statistically significant at the 95% confidence

level. This experiment, therefore, similarly calls for a correctly specified form of the monetary

policy rule within the NKM framework for the correct estimation of the wealth effect, while the

other two effects are only slightly influenced.

8. Conclusion

This study pioneers the empirical estimation of a stylized integrated financial-macroeconomic

ABM, addressing the econometric challenges posed by the interconnection of the two sectors of

the economy. Our focus on three interaction channels—the wealth effect, cost effect, and price

misperception—reveals statistically significant and economically meaningful parameters, demon-

strating the interconnections between the US stock market and the real economy over the last

seven decades. Overcoming the limitations of traditional econometric techniques and mixed data

sampling, we employ the simulated method of moments, showcasing its effectiveness in estimating

complex agent-based models even under different data frequencies.

Our empirical findings contribute novel insights into the complicated relationships between

the financial and real sectors. Notably, the wealth effect parameter highlights the sensitivity of
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current consumption to real stock prices, while the cost effect parameter emphasizes the influence

of stock prices on inflation dynamics. The fundamental price misperception effect parameter sheds

light on how financial market participants approximate the true value of stocks based on real

economic conditions.

The supplementary robustness checks and sensitivity experiments reinforce the integrated

model’s credibility while emphasizing the importance of a proper model specification. Exploring

alternative parameterizations and structural adjustments, the estimated model maintains rela-

tive stability, mainly regarding price misperception and cost channels, and adaptability in re-

parameterization. Despite nuanced shifts, all interaction parameters always retain statistical sig-

nificance and economic importance.

The practical implications of the identified interaction channels highlight the substantial

mutual impacts between stock market dynamics and key macroeconomic variables. Understand-

ing the relationship between the financial and real sectors becomes crucial for policymakers when

formulating effective economic strategies. The estimated parameters provide insights into the re-

sponsiveness of consumption, inflation, and investment to stock market fluctuations, as well as

how the behavior of stock market participants relates to current economic conditions and macroe-

conomic expectations. Regulators in both sectors can leverage this understanding to design more

targeted policy interventions, considering the mutually reinforcing effects across sectors. Overall,

these practical implications highlight the significance of integrating financial and macroeconomic

dynamics for informed policy decision-making.

Addressing future research directions, we propose two avenues. First, extending the model’s

estimation to encompass the entire framework, not just the interaction channels, would offer a com-

prehensive understanding of the integrated system. Nevertheless, we are slightly skeptical regarding

the capability of the SMM to accomplish this objective. It is possible that a more sophisticated

simulation-based estimation method needs to be implemented. Second, incorporating additional

possible interaction channels would introduce an additional layer of complexity, contributing to a

more nuanced understanding of the interplay between financial and macroeconomic dynamics.

In conclusion, this research advances the empirical exploration of integrated economic ABMs,

offering valuable insights into the dynamic interactions between financial and macroeconomic sec-

tors. The established methodology provides a robust foundation for further empirical estimation

studies, contributing to the ongoing methodological discussion on the empirical validation of ABMs.
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Appendix A. State-space representation of the forward-looking NKM

A =

 1 0 τ

−κ 1 0
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 (A.1)
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0 0 0

 (A.2)
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0 0 0

0 −c2 0

0 0 0

 (A.3)

D =

1 0 0

0 1 0

0 0 1

 (A.4)
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