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Abstract: 
This paper develops a novel gradient-based reinforcement learning algorithm for 
solving dynamic quantile models with uncertainty. Unlike traditional approaches 
that rely on expected utility maximization, we focus on agents who evaluate 
outcomes based on specific quantiles of the utility distribution, capturing 
intratemporal risk attitudes via a quantile level τ ∈ (0, 1). We formulate a recursive 
quantile value function associated with time consistent dynamic quantile 
preferences in Markov decision process. At each period, the agent aims to maximize 
the quantile of a distribution composed of instantaneous utility combined with the 
discounted future value, conditioned on the current state. Next, we adapt the Actor-
Critic framework to learn τ-quantile of the distribution and policy maximizing the 
τ-quantile. We demonstrate the accuracy and robustness of the proposed algorithm 
using an quantile intertemporal consumption model with known analytical 
solutions. The results confirm the effectiveness of our algorithm in capturing 
optimal quantile-based behavior and stability of the algorithm. 
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1 Introduction

Dynamic decision-making is fundamental to economic analysis, playing a central role

in numerous fields and applications. Classical approaches to sequential decision-making

typically revolve around maximizing the expected sum of discounted utility, providing a

convenient and analytically tractable framework. However, a growing body of literature

has proposed quantile maximization as a compelling alternative. Initially introduced by

Manski (1988) and later axiomatized by Chambers (2009) and Rostek (2010), quantile pref-

erences shift the focus from expected utility to specific points in the distribution of utility.

As emphasized by Rostek (2010), quantile-based preferences offer attractive features: ro-

bustness to extreme outcomes and invariance to ordinal transformations of utility. With

quantile preferences, the decision maker’s attitude toward risk is captured by the quantile

level τ ∈ (0, 1), with lower values reflecting greater aversion to downside risk. The the-

oretical foundations for dynamic quantile preferences have been rigorously developed in

recent work. de Castro and Galvao (2019) and de Castro and Galvao (2022) establish key

properties of recursive quantile models, including time consistency and analytic tractabil-

ity. Building on this, de Castro et al. (2025) further extends the framework to incorporate

state-dependent decisions. Notably, as discussed in de Castro and Galvao (2019), the dy-

namic quantile model distinguishes between two dimensions of risk: intertemporal risk,

shaped by the curvature of the utility function, and intratemporal risk, governed by the

choice of the quantile level τ.

In parallel with these theoretical contributions, quantile preferences have been applied

in various economic contexts. Giovannetti (2013) explored their implications for asset pric-

ing. Long et al. (2021) used equal-quantile rules to design resource allocation mechanisms

under uncertainty. In financial econometrics, Baruník and Čech (2021) developed a panel

quantile regression model to capture systemic tail risks, and Baruník and Nevrla (2022)

introduced the Quantile Spectral Beta to analyze risk across investment horizons. He

et al. (2021) examined portfolio selection under median and quantile criteria, offering al-

ternatives to expected return-based strategies. Finally, de Castro et al. (2022) provided

experimental evidence on the extent to which individual behavior aligns with quantile

maximization.
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Despite theoretical advancements, quantile-based dynamic models present significant

computational challenges. Classical numerical solution methods for dynamic decision

problems are typically designed for expected utility models and are not directly applicable

to the quantile setting (Taylor and Uhlig, 1990; Rust, 1996, 2016; Gaspat and L. Judd, 1997;

Christiano and Fisher, 2000; Aruoba et al., 2006; Den Haan, 2010; Kollmann et al., 2011;

Miao, 2013; Maliar and Maliar, 2014). A recent contribution by de Castro et al. (2023) in-

troduced a quantile-based value function iteration algorithm for solving dynamic quantile

models. However, traditional methods such as value function iteration rely on full dis-

cretization of the state and action spaces, as well as the transition dynamics. This makes

them computationally infeasible in high-dimensional settings, namely when the state or

action space is multidimensional or composed of multiple variables.

In this paper, we propose a novel gradient-based reinforcement learning algorithm de-

signed for solving dynamic quantile models. Our approach is based on reinforcement

learning combined with neural networks and offers several advantages over existing meth-

ods such as value iteration (de Castro et al., 2023). First, the algorithm scales naturally to

high-dimensional state and action spaces, as neural networks are well-suited for processing

complex, high-dimensional inputs. This allows the algorithm to handle large-scale models

without requiring discretization of the model’s structure. Second, reinforcement learning

can operate in model-free environments, enabling our algorithm to be applied not only

in theoretical settings but also in empirical or simulated environments where transition

probabilities are unknown or difficult to specify.

Several recent studies have explored the application of reinforcement learning in eco-

nomics. Zhou et al. (2025) used payoff-based reinforcement learning to study liquidity pro-

vision in limit order markets. He (2023) proposed a gradient-based reinforcement learning

method for modeling belief-based equilibria in repeated games. Wu and Li (2024) ap-

plied an Actor-Critic algorithm to portfolio selection under regime uncertainty. Tahvonen

et al. (2022) used reinforcement learning to solve high-dimensional forest management

problems, while Bekiros (2010) introduced a fuzzy reinforcement learning model for fore-

casting financial market dynamics. These contributions collectively highlight the potential

of reinforcement learning methods to address the computational complexity in dynamic

models.
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While reinforcement learning methods are traditionally designed to find policies that

maximize the expected cumulative reward, a growing body of literature has focused on

learning the distribution of cumulative rewards—a field known as distributional reinforce-

ment learning. Bellemare et al. (2017) introduced this idea through the distributional

Bellman equation, enabling the learning of the full distribution of cumulative rewards.

Building on this, Dabney et al. (2018) employed quantile regression to model the reward

distribution. However, in both cases, the learned distribution was ultimately used to com-

pute its expectation, and the resulting policy aimed to maximize the expected return. In

these approaches, modeling the distribution serves primarily to stabilize the learning of

the expected value. A more closely related work to our work is that of Jiang et al. (2022),

which proposes a method that not only learns the distribution of cumulative rewards but

also directly optimizes the policy for a specific quantile. Yet the study does not address

the issue of time-consistent quantile preferences as developed in de Castro et al. (2025).

The contribution of this paper is the following. First, we formalize dynamic quantile

preferences within a Markov decision process (MDP) framework, generalizing the dynamic

quantile preference approach presented in de Castro et al. (2025). Within this MDP frame-

work, we define a recursively formulated value function consistent with dynamic quantile

preferences. At each period, the agent aims to maximize the quantile of a distribution com-

posed of instantaneous utility combined with the discounted future value, conditioned on

the current state. The decision maker’s intratemporal risk preference is characterized by

selecting a quantile level τ ∈ (0, 1), indicating their attitude toward risk within each period.

Second, we propose a numerical solution to the dynamic quantile model. Our solution

relies on a functional approximation of value function and the decision maker’s policy us-

ing neural networks. Utilizing the reinforcement learning technique, we train the networks

to approximate the theoretical value function and policy by a repetitive interaction with

the underlying economic model. Specifically, we adapt Actor-Critic algorithm from the

domain of deep reinforcement learning (Sutton and Barto, 2018). We modify the algorithm

so that the Critic network estimates the τ-quantile of the relevant distribution, while the

Actor network learns actions that maximize this quantile. Using neural networks enables

us to approximate the value of any given state and identify optimal actions directly, result-

ing in a complete description of the solution. We present the algorithm for both finite and
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infinite time horizons.

We evaluate the proposed algorithm on an intertemporal consumption-based dynamic

model introduced by de Castro et al. (2025). In this model, a decision-maker chooses how

to allocate wealth between current consumption and investment in a risky asset over time,

aiming to maximize a recursively defined quantile-based utility function. The model is

characterized by three key parameters: the discount factor (β), the risk attitude parameter

(τ), and the elasticity of intertemporal substitution (determined by parameter γ). de Castro

et al. (2025) provide explicit analytical solutions for the value function, optimal consump-

tion, and asset allocation, enabling us to reliably assess the accuracy and efficiency of our

numerical approach. For consistency and direct comparability, our numerical experiments

adopt the same specification as de Castro et al. (2023), who previously used a value it-

eration algorithm to solve this consumption model. The results show high accuracy and

convergence of the proposed algorithm. Moreover, we confirm the robustness of our al-

gorithm through repeated simulations with different initializations, indicating reliable and

stable convergence to optimal policy and value function estimates.

The paper is structured as follows. section 2 reviews the Markov decision process and

fundamental concepts related to quantile preferences and establishes a quantile value func-

tion in the dynamic setting. section 3 introduces the gradient-based reinforcement learning

algorithm, detailing the update rules for Critic and Actor network and the resulting algo-

rithm for finite and infinite horizon. section 4 presents numerical experiments evaluating

the algorithm against analytical benchmarks using the intertemporal consumption model.

Finally, section 5 concludes by summarizing the main findings and suggesting directions

for future research.

2 Dynamic quantile model

In this section, we establish the dynamic quantile model. First, we review the Markov

decision process as a framework for decision-making in stochastic and dynamic setting.

Next, we present basic theoretical concepts related to quantile preferences in a static

case and, finally, we introduce quantile preferences in the dynamic setting fitting into

the Markov decision process.
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2.1 Markov decision process framework

In this paper, we focus on a class of stochastic dynamic economic models that can be

formulated as a Markov decision process (MDP) Rust (1996). The MDP framework is

a widely used and flexible tool for modeling discrete-time stochastic dynamic systems. It

imposes no specific structure on the states, actions, or transition dynamics—both states and

actions may be discrete or continuous, and can be either unidimensional or multidimen-

sional. The core assumption of an MDP is the Markov property: the transition dynamics

depend only on the current state and action, and not on the history or the path that led

to the current state. Importantly, this assumption does not restrict decision-making to be

based solely on the “present” in a narrow sense. The state itself can be defined to include

relevant historical information, thus preserving memory and capturing path dependence

when necessary. For example, consider an AR(p) time series process. The state can be

represented by the last p realizations of the series since the next value depends only on

these. This structure satisfies the Markov property because the future depends solely on

the current state, even though that state is composed of past observations. In this way,

the MDP framework can capture persistence and cyclical dynamics common in economic

modeling. Another appealing feature of MDPs is their ability to accommodate cases where

actions directly determine future states. For instance, a savings decision made today de-

termines the wealth available in the next period, making the action an explicit component

of the future state.

Broadly, a vast majority of economic models that involve dynamic programming or

sequential decision-making can be described in terms of MDP. By relying on the MDP

framework, we can capture a large variety of economic models such as intertemporal con-

sumer choice, firm behavior involving inventory and production planning, or labor supply.

In macroeconomics, we can consider models of economic growth, business cycles, or fiscal

and monetary policy models. In financial economics, the framework captures models of

portfolio selection and asset pricing, where decisions and outcomes evolve over time in re-

sponse to stochastic shocks. The application of the MDP framework in economic modeling

is substantial. In the next paragraphs, we review the MDP framework.

Let S be a set of possible states and let A denote the space of possible actions available

to the decision maker. In a period t = 0, 1, . . . , the decision maker finds herself in a fully
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observable state st ∈ S and chooses an action at. After taking the action at, the decision

maker transitions to a new state st+1 and receives a flow utility ut+1 = u(st, at). The utility

ut+1 is also commonly referred to as a reward, yet, we will use the term utility throughout

the paper. In addition, we will assume that the utility u(st, at) is a random variable. The

state transition is characterized by a probability measure Ps and exhibits Markov property.

That is the state st contains all relevant information about the transition to the next state

and the transition history st−1, st−2... is not relevant for the future transition:

p(st+1|st) = p(st+1|s0, s1, . . . , st) (1)

Similarly, the flow utility u(st, at) (its distribution) depends only on the current state st and

the action at taken. The actions nor the states in the previous periods do not influence the

utility or its distribution.

The dynamic decision-making in the MDP setting is represented by policy π. The policy

is a mapping from state space S to the probability of selecting an available action at ∈ A.

We denote π(at|st) as the probability of selecting action at in state st. A standard goal of

MDP-based models is to find an optimal policy π∗ that maximizes a value function of an

initial state. Typically, for a specified policy π, a value function associated with an initial

state s0 is defined as the expected sum of discounted utilities:

vπ(s0) = E

[
T−1

∑
t=0

βtu(at, st)

]
(2)

where β is a discount factor and T is the number of periods in the model. For infinite hori-

zon problems, the value function becomes the expected sum of infinite series of discounted

flow utilities.

A central concept in solving for the optimal policy is the Bellman operator, which pro-

vides a recursive formulation of the value function. For any given policy π, the Bellman

operator Tπ maps a value function v : S → R to a new function Tπv defined as:

(Tπv)(st) = E

[
u(at, st) + β ∑

st+1∈S
p(st+1|st, at)v(st+1)

]
(3)

for all st ∈ S , where p(st+1|st, at) is the transition probability from state st to state st+1

given action at. The Bellman operator expresses the expected value of following policy π
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starting from state st, by combining the immediate utility with the discounted continuation

value. In the case of an optimal policy, the corresponding Bellman optimality operator T

is defined as:

(T v)(st) = max
a∈A

E

[
u(a, st) + β ∑

st+1∈S
p(st+1|st, a)v(st+1)

]
(4)

The fixed point of this operator yields the optimal value function v∗, i.e., v∗ = T v∗, and

the corresponding optimal policy π∗ can be derived by selecting actions that achieve the

maximum in the Bellman equation. Finally, we can express optimal value function v∗

associated with optimal policy π∗ in the following recursive way:

v∗(st) = max
a∈A

E

[
u(a, st) + βv∗(st+1)

∣∣∣∣st

]
(5)

2.2 Static quantile preferences

We now shift from the standard expected utility approach to focus on quantile prefer-

ences. We first introduce these preferences in a static case and then extend them to the

dynamic case in subsection 2.3.

We define τ-quantile of a random variable Z with cumulative density function F as:

Qτ[Z] = in f {z ∈ R, F(z) ≥ τ} (6)

where τ ∈ (0, 1). Analogously, we define a quantile function F−1, which is an inverse of F

as:

F−1(τ) = Qτ[Z] (7)

For a utility function u : R −→ R, we define τ-quantile preference over two random

variables Z1 and Z2 as follows:

Z1 ⪰ Z2 ⇐⇒ Qτ[u(Z1)] ≥ Qτ[u(Z2)] (8)

The decision maker with τ-quantile preference chooses a variable Z1 over Z2 if a τ-quantile

of utility stemming from variable Z1 exceeds τ-quantile of utility stemming from variable

Z2. Compared to the standard expected utility case, we replace the expectations of the

utility distribution with a quantile of the distribution. In a static case, the quantile prefer-
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ence definition could even be simplified. de Castro and Galvao (2019) notes that for any

strictly increasing and continuous function u, the quantile preference remains unaffected

by the choice of utility function, due to the invariance of quantiles to monotonic transfor-

mations. Therefore, in the static case, the utility function can be omitted, allowing for a

direct comparison of the quantiles of Z1 and Z2:

Z1 ⪰ Z2 ⇐⇒ Qτ[u(Z1)] ≥ Qτ[u(Z2)] (9)

⇐⇒ u(Qτ[Z1]) ≥ u(Qτ[Z2]) (10)

⇐⇒ Qτ[Z1] ≥ Qτ[Z2] (11)

Note that the quantile level τ reflects a decision maker’s risk attitude (Manski, 1988; Rostek,

2010). Lower τ implies greater risk aversion. Quantile preferences also enable a meaningful

separation of risk into intertemporal and intratemporal dimensions. This separation is

valuable in dynamic settings, where uncertainty exists both across time and within each

period. Quantile preferences isolate the within period risk attitude, encoded in τ, from the

intertemporal trade-offs. Overall, quantile preferences possess several desirable properties:

robustness, invariance under ordinal transformations, and a clear characterization of risk

attitudes (Rostek, 2010). This makes quantile preferences an appealing choice for modeling

decision makers’ risk aversion.

2.3 Dynamic quantile preferences

We now extend the static quantile preference framework described in subsection 2.2

into a dynamic setting consistent with Markov decision processes, subsection 2.1. Unlike

the standard expected utility framework where the decision maker aims to maximize the

expected sum of discounted utilities, under quantile preferences the decision maker in-

stead evaluates policies based on the quantile stemming from the discounted utilities. This

shift in the objective function leads to significant modeling and analytical implications.

The dynamic quantile preferences were introduced by de Castro and Galvao (2019) and

further studied by de Castro et al. (2022) and de Castro et al. (2025). An important consid-

eration when working with dynamic quantile preferences is time consistency. In contrast

to expected utility preferences, quantile-based preferences are not generally dynamically

consistent - the decisions made to optimize a future quantile may no longer be optimal
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when re-evaluated from an updated state. This inconsistency arises because the quantile

is not a linear operator, which means we cannot rely on the law of iterated expectations.

de Castro and Galvao (2019) illustrates this point with a clear example, showing that opti-

mizing a quantile of the sum of discounted utilities in a sequential decision-making setting

leads to time inconsistency. This occurs because the decision-maker may have an incentive

to deviate from the plan chosen in the first period when making decisions in the second

period. As a consequence, simply replacing the expectations operator in Equation 2 by a

quantile leads to a time inconsistent value function

vτ
π(s0) = Qτ

[
T−1

∑
t=0

βtu(at, st)

]
(12)

Instead, de Castro and Galvao (2019) studied a recursive formulation of the quantile

preference. The recursive structure was further extended by de Castro et al. (2025) into

a more general setting who introduced a state conditioning. The recursive formulation

combined with the state conditioning was shown to lead to dynamically consistent quantile

preference. We build on the time consistent specification introduced in de Castro et al.

(2025). For some policy π, we define a τ-quantile specific value function vτ
π : S −→ R that

ensures time consistency with the following recursive equation:

vτ
π(st) = Qτ

[
u(at, st) + βvτ

π(st+1)

∣∣∣∣st

]
(13)

where β ∈ (0, 1) is the discount factor, action at is chosen from policy π and st+1 refers

to a state following state st. The optimal value function v∗τ then satisfies the following

recursive specification

v∗τ(st) = max
a∈A

Qτ

[
u(a, st) + βv∗τ(st+1)

∣∣∣∣st

]
(14)

Note that the equation has the same form as the recursive definition of the value func-

tion in the expected case in Equation 5. We only replaced the expectation operator with

the quantile operator. This similarity provides a direct link between the dynamic quan-

tile preference and the expected utility maximization theory. We can replace the expected

operator with the quantile operator, but only in the recursive specification. Through the

law of iterated expectations, the standard expected utility maximization theory then allows
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to write the objective as the expectations over the discounted sum of utilities as in Equa-

tion 2. However, no such law is available for the quantile operator and we must thus use

the recursive specification following Equation 14.

From Equation 14, we can see that the decision maker with τ-quantile preference

chooses the action that maximizes the quantile of the sum of current period utility and

the discounted next period value conditioned on the current period state. Let denote the

sum as follows

y∗ d
= u(a, st) + βv∗τ(st+1)

∣∣∣st, where a ∼ π∗(·|st) (15)

Both components of the sum in distribution from Equation 15 are random variables, and

they together determine the distribution whose quantile is being maximized. The current

period utility from an action is a random variable from the definition of MDP. The next

period value v∗τ(st+1) is a random variable since there is uncertainty about the next period

state st+1. Yet the uncertainty about the next period state is conditioned on the current

state. This ensures the dynamic consistency of the decision-making. Each state is assigned

a value through the value function and the dynamic quantile preference reflects only the

instantaneous utility and the next state transition. By choosing the actions, the agent

influences the instantaneous utility and the probability of transitioning from state st to a

new state st+1. The agent thus controls the distribution in Equation 15 directly by choosing

utility distribution and indirectly through the probability of the occurrence of the next

state st+1. The balance between the instantaneous utility and the future value makes the

decision-making dynamic with τ-quantile level capturing the risk preference.

Unfortunately, the recursive specification leads to computational difficulties. We can

expand the recursive structure as a sequence of nested conditional quantiles:

v∗τ(st) = max
at

Qτ

[
u(at, st) + βv∗τ(st+1)

∣∣ st

]
(16)

= max
at

Qτ

[
u(at, st) + β max

at+1
Qτ

[
u(at+1, st+1) + βv∗τ(st+2)

∣∣ st+1
] ∣∣ st

]
(17)

= max
at

Qτ

[
u(at, st) + β max

at+1
Qτ

[
u(at+1, st+1) + β max

at+2
Qτ

[
· · · (18)

+ β max
at+n−1

Qτ

[
u(at+n−1, st+n−1) + βv∗τ(st+n)

∣∣ st+n−1
]
· · ·

∣∣∣∣ st+1

]∣∣∣∣ st

]
(19)

Yet, searching for the optimal value function requires a recursive evaluation of the con-
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ditional nested quantiles. This makes finding an analytical solution of dynamic quantile

models generally difficult. As a remedy, we present a numerical solution in section 3 which

is the main contribution of this paper.

3 Gradient-based reinforcement learning algorithm

In this section, we present a numerical solution to the dynamic quantile model from

section 2.

3.1 Preliminaries

Dynamic economic problems have traditionally been approached using methods such

as value iteration. These techniques are well-established and provide a reliable numerical

solution to dynamic stochastic optimization problems. A standard approach is to fully

discretize both the state space and the action space, along with a possible discretization

of the model’s transition dynamics to match the state and action grid. The value function

is represented as a matrix of real numbers each corresponding to a state and action grid

cell. A Bellman operator is then used to iteratively update the value function estimates

for individual cells until the value function estimates converge. The policy is then derived

from the final value function estimates simply as an action leading to the highest value

function for each state grid. This approach was used by de Castro et al. (2023).

However, these methods can be applied as long as the full discretization of state space

is feasible. For problems, where the state is not represented with a single variable but

a collection of multiple variables or a vector, a full discretization of the n-dimensional

state space complicates. As the number of variables representing the state space grows,

discretization becomes computationally prohibitive and, in many cases, infeasible. This

phenomenon is also known as the curse of dimensionality.

We propose an alternative approach based on function approximation that does not

require any discretization of states, actions or the transition dynamics and works in high

dimension settings. Rather than representing the value function as a matrix of real num-

bers over a grid, we instead directly approximate the theoretical value and policy functions.

For the value function, we aim to find a parametrized mapping V w: S −→ R that will return

a value function estimate V w(s) for any state s. For the policy, we aim to find a mapping
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πθ: S −→ A that will return an action a for any state s mimicking the optimal theoretical

policy of the decision maker.

Generally, the functional form of the value function and the policy is unknown, and

putting any assumptions on the functional form is cumbersome. To avoid any issues with

the specification of functional form, we use neural networks that can serve as a universal

approximator, Hornik (1991). Another advantage of neural networks is their ability to

process high dimensional inputs. Specifically, we use multilayer perceptron which is a

computational model composed of layers of nodes. Each node takes inputs, multiplies

them by weights, sums the product, and applies a non-linear activation function to the

sum. Each layer in the perceptron repeats this process, passing its outputs as inputs to the

next layer nodes. Ultimately, the resulting network is a non-linear mapping that projects

the network’s input space to the output space.

Our solution relies on two neural networks. We use network V w : S −→ R to ap-

proximate the theoretical optimal value function vτ
π defined in Equation 14. The network

consists of trainable weights w ∈ Rm and the non-linear activation functions. The network

takes a state s as its input, transforms the input and returns an estimate of the theoreti-

cal value function. We refer to the network V w as Critic network. Next, we use network

πθ that represents the decision maker’s policy. The network consists of trainable weights

θ ∈ Rm′ and the non-linear activation functions. It processes state s and returns a proba-

bility of choosing action a when making a decision in state s. We denote the probability as

πθ(a|s) and refer to the network πθ as Actor. The specific output layer of Actor depends

on the type of action. For discrete actions, Actor network returns a vector of probabilities

πθ(a|s) for individual actions. For economic models where the actions are continuous, we

represent the policy with a parametrized density function. In the continuous case, Actor

returns the parameters of the density function and πθ(a|s) represents the value of the den-

sity function. The choice of the density function depends on the nature of the actions, e.g.

the range of possible actions.

Our objective is to find optimal weights w∗ and θ∗ so that Critic and Actor networks

approximate the theoretical value function from Equation 14 and the respective optimal

policy as precisely as possible. To find the optimal weights, we adopt a method from the
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reinforcement learning framework, which is well-suited for modeling dynamic decision-

making in MDP-like environments. In reinforcement learning, an agent or a decision

maker interacts with an environment over a sequence of time steps, makes decisions based

on observed states, receives feedback in the form of instantaneous utility, and updates her

decision-making or belief about the value function according to the received instantaneous

utility. Unlike traditional dynamic programming methods that rely on complete knowl-

edge of the transition probabilities, reinforcement learning methods can operate also in

model-free settings, where the agent does not require an explicit specification of the envi-

ronment’s dynamics. This is particularly advantageous for economic applications, where

such information is difficult to derive analytically, or available only through simulation.

For a detailed introduction to reinforcement learning, we refer the reader to Sutton and

Barto (2018).

In our setting, we train Critic and Actor network by a repetitive interaction with the

underlying economic model and update the weights with each interaction. This process

leads to a gradual improvement of the policy and the value function estimate towards its

theoretical counterparts. In theory, we can simulate an infinite number of interactions with

the underlying model and update the weights to any arbitrary degree of precision. Hence,

we can train the networks to fit the theoretical model almost perfectly as we can simulate

an unlimited amount of interactions from which the networks can learn. In the next sec-

tions, we detail the gradient-based update rules for Critic and Actor weights reflecting the

quantile preferences and the training algorithm itself.

3.2 Quantile value function update rule

Under some policy π, the Critic network V w represents an estimate of τ-quantile value

function given by Equation 13. Our goal is to learn the τ-quantile of the distribution

u(at, st) + βvτ
π(st+1)

∣∣∣st (20)

which is the sum of the instantaneous utility and the discounted future certainty equivalent

of the value function conditioned on the current state. Since the value function of the

next state st+1 is unknown, we will use the Critic network estimate in state st+1 instead.

15



Consequently, we aim to learn the τ-quantile of the following distribution denoted as yw:

yw
d
= u(at, st) + βV w(st+1)

∣∣∣st (21)

Now, consider the following transition in the MDP. The decision maker chooses action

at ∼ π(·|st) in state st, receives utility ut+1 and transition to a new state st+1. For this

transition, we calculate a target value which is a sum of the flow utility ut+1 and the

discounted certainty equivalent as estimated by Critic in state st+1:

yt = ut+1 + βV w(st+1) (22)

Notice that the target yt is a single sample from the distribution in Equation 21. Since

the transition realized from state st, the distribution of the instantaneous utility and the

future certainty equivalents is already conditioned on state st. Thus, the target variable

yt represents a single realization from the distribution for which the decision maker has a

τ-quantile preference.

In order to learn the τ-quantile of the distribution in Equation 21, we use quantile

regression loss over yt realization. We calculate the temporal difference error of the Critic

estimate in state st compared to the target yt as follows:

δt = yt − V w(st) (23)

Following Koenker (2005), the τ-quantile regression loss is given by the following expres-

sion:

LQ(δt) = |τ − I{δt < 0}| · |δt| (24)

where I is an indicator function with value 1 if δt < 0 and 0 otherwise. We perform

a gradient descent step to Critic weights minimizing the quantile regression loss from

Equation 24, which gives us the following update rule for Critic network:

w← w− αw∇wLQ(δt) (25)

where αw is a small positive learning rate. By performing a single update from Equation 25,

Critic’s weights are updated in the direction minimizing the quantile loss from Equation 24

and the Critic estimate becomes closer to the theoretical value function from Equation 13.
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3.3 Policy update rule

Now we can turn to the gradient update rule for the Actor network πθ representing

decision makers policy. Our goal is to gradually update weights so that Actor favors actions

leading to higher value function. Recall that the Actor network returns the probability

of actions and the resulting policy is stochastic. Our objective is thus to increase the

probability of actions leading to higher value function. We now derive the Actor update

rule borrowing from the methodology proposed by Jiang et al. (2022).

Assume that the decision maker is facing distribution from Equation 21 in state st

with a cumulative density function FY(y, θ), with Y being a random variable following

distribution yw. The distribution depends on policy π and thus on policy parameters

θ. Further assume, that there exists an inverse function F−1
Y , so that we can express the

τ-quantile of variable Y conditioned on the policy parameters as:

Qτ[Y|θ] = F−1
Y (y, θ) (26)

Our goal is to derive the gradient of the τ-quantile with respect to the policy parameters

∇θQτ[Y|θ] so that we can find Actor’s weights maximizing the τ-quantile. From definition,

the following expression holds:

FY(Qτ[Y|θ], θ) = τ (27)

Taking the derivative of both sides with respect to parameters θ in point θ0 and applying

a chain rule for multivariate functions we obtain the following relationship:

∇yFY
∣∣
y=Qτ [Y|θ0], θ=θ0

· ∇θQτ[Y|θ]
∣∣
θ=θ0

+∇θ FY
∣∣
y=Qτ [Y|θ0], θ=θ0

= 0 (28)

from which we can express the derivative of the τ-quantile with respect to policy parame-

ters:

∇θQτ[Y|θ]
∣∣
y=Qτ [Y|θ0], θ=θ0

= −∇θFY

fY

∣∣
y=Qτ [Y|θ0], θ=θ0

(29)

where fY denotes the density of variable Y.

Since fY is positive and univariate, it does not affect the direction of the gradient in

Equation 29. We now solve for the numerator ∇θFY. We can express FY with the expecta-
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tions over an indicator function (Jiang et al., 2022):

FY(y, θ) = E [I{Y ≤ Qτ[Y|θ]}] (30)

The value of quantile Qτ[Y|θ] is unknown. Nevertheless, we use Critic network to provide

an estimate of its value

Qτ[Y|θ] ≈ V w(st) (31)

Then we can express the gradient ∇θFY in terms of the Actor network as follows:

∇θFY(y, θ) = ∇θE [I{Y ≤ Qτ[Y|θ]}] (32)

≈ ∇θE [I{Y ≤ V w(st)}] (33)

= ∇θE

[
∑

a
πθ(a|st)I{Y ≤ V w(st)}

]
(34)

= E

[
∑

a
∇θπθ(a|st)I{Y ≤ V w(st)}

]
(35)

= E

[
∑

a
πθ(a|st)∇θ log(πθ(a|st))I{Y ≤ V w(st)}

]
(36)

= E [∇θ log(πθ(at|st))I{Y ≤ V w(st)}] (37)

We estimate the last term using the transition st, at, st+1 and ut+1 as

E [∇θ log(πθ(at|st))I{Y ≤ V w(st)}] ≈ ∇θ log(πθ(at|st))I{ut+1 + βV w(st+1) ≤ V w(st)}

(38)

Building on Equation 29 and Equation 38, the update rule for Actor network becomes the

following:

θ← θ− αθ∇θ log(πθ(at|st))I{rt+1 + βV w(st+1) ≤ V w(st)} (39)

where αθ is a learning rate. The update rule can be interpreted as minimizing the log-

likelihood of actions that result in lower value than the benchmark given by the Critic

network in state st. Repeatedly applying this rule reinforces actions that lead to policies

with higher value than the Critic’s benchmark.
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Table 1. Summary of Notation

π policy
π(a|s) probability of action a in state s under policy π
vτ

π value function for τ-level preference under policy π
π∗τ optimal policy for τ-level preference
v∗τ value function for τ-level preference under optimal

policy
πθ Actor network with weights θ
V w Critic network with weights w

3.4 Time consistent Quantile Actor-Critic algorithm

We build the resulting algorithm on the update rules for Critic network Equation 25

and Actor network Equation 39. We present an algorithm both for finite time horizon and

infinite time horizon.

The algorithm for the finite horizon is depicted in Algorithm 1. The algorithm is based

on a standard Actor-Critic algorithm, see Sutton and Barto (2018), with adjusted update

rules matching the time consistent quantile preference. We repeatedly interact with the

underlying model and train the Actor and Critic network on individual transitions in the

model. When the agent reaches a terminal state, we disregard the continuation value and

start from the initial state again. By repeating this process, the Actor and Critic network

weights converge to a local optimum.

Algorithm 1 Finite horizon Actor-Critic for time consistent dynamic quantile preferences

Set τ ∈ (0, 1) preference level
Randomly initialize Actor network πθ with weights θ
Randomly initialize Critic network V w with weights w
while not done do:

Get initial state s
while s′ is not terminal do:

Sample action a in current state s: a← πθ(·|s)
Take action a, observe new state s′ and utility u
Calculate target value: y← u + β · V w(s′) · is_terminal
Calculate error of value function: δ← y− V w(s)
Update critic weights w with update rule from Equation 25:

w← w− αw∇wLQ(δ)
Update actor weights θ with update rule from Equation 39:

θ← θ− αθ∇θ log(πθ(a|s))I{δ ≤ 0}
Set s← s′

end while
end while
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The algorithm for the infinite horizon is depicted in Algorithm 2. Since there is no ter-

minal state in the infinite horizon setting, we always use the Critic network as an estimate

of the next state value. This leads to a potential instability during the training since a large

error in the next value estimate can introduce a large error in the current value estimate

leading to an even higher error in the next value estimate and eventually to a divergence.

To stabilize the training, we use a Critic target network providing next state estimates

(Mnih et al., 2015). The target network is a copy of Critic network but its weights are up-

dated with a delay. Specifically, after each update to the Critic network, the target network

parameters are adjusted using a soft update rule: w′ ← ρw + (1− ρ)w′, where ρ ∈ (0, 1]

controls the update rate. This ensures that the target values change slowly, reducing the

risk of divergence.

Algorithm 2 Infinite horizon Actor-Critic for time consistent dynamic quantile preferences

Set τ ∈ (0, 1) preference level
Randomly initialize Actor network πθ with weights θ
Randomly initialize Critic network V w with weights w
Set Critic target network V ′w′ weights to Critic network weights
while not done do:

Get initial state s
Sample action a in current state s: a← πθ(·|s)
Take action a, observe new state s′ and utility u
Calculate target value: y← u + β · V ′w′(s′)
Calculate error of value function: δ← y− V w(s)
Update critic weights w with update rule from Equation 25:

w← w− αw∇wLQ(δ)
Update actor weights θ with update rule from Equation 39:

θ← θ− αθ∇θ log(πθ(a|s))I{δ ≤ 0}
Update target network weights: w′ ← ρw + (1− ρ)w′

Set s← s′

end while

4 Assessing the reinforcement learning algorithm

In this section we assess the proposed algorithm on an intertemporal consumption

model with dynamic quantile preferences studied by de Castro et al. (2025). Since there

exists an analytical solution to the model, we compare the numerical results with their

theoretical counterpart. This allows us to access the convergence and precision of the algo-

rithm. We also conduct an experiment where we repeatedly train the individual networks
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with different initialization of weights to evaluate the stability of the solution.

4.1 Intertemporal consumption

To assess our reinforcement learning algorithm, we adopt the intertemporal consumption-

saving model with dynamic quantile preferences studied by de Castro et al. (2025). This

model is particularly useful for evaluating the numerical algorithm, as it provides explicit

analytical solutions for the value function, optimal consumption, and asset allocation un-

der certain conditions. Hence, it serves as an effective benchmark to test convergence and

accuracy. We choose the same parametrization as de Castro et al. (2023), so our results are

directly comparable with the numerical method presented by de Castro et al. (2023).

Consider a decision maker who, at the beginning of period t, possesses an amount xt ∈

X ⊆ R+ of a risky asset. This asset yields a stochastic return denoted by zt ∈ Z ⊆ R++.

Thus, the agent starts the period with total wealth equal to xtzt. Each period, the agent

decides how much wealth to consume immediately, denoted by ct, and how much to carry

forward as asset holdings for the next period, xt+1. The consumption and asset holdings

are related by the following relationship:

ct = xtzt − xt+1. (40)

In each period t, the agent receives a flow CRRA utility from the consumption:

u(c) =
c1−γ

1− γ
(41)

The agent’s dynamic preferences translate to solving the following recursive dynamic

quantile preference problem for the value function, de Castro et al. (2025):

v(xt, zt) = max
xt+1∈[0,xtzt]

{
(xtzt − xt+1)

1−γ

1− γ
+ βv(xt+1, zt+1)

∣∣∣∣zt

}
(42)

where γ > 0, γ ̸= 1 measures risk aversion, β ∈ (0, 1) is the discount factor, and τ ∈ (0, 1)

characterizes the agent’s quantile-based risk preference.

de Castro et al. (2025) showed that when asset returns zt are independently and identi-

cally distributed (i.i.d.), the model has the following analytical solution. Letting

aτ,γ = β1/γ(Qτ[z])(1−γ)/γ (43)
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the explicit analytical solutions for consumption, asset allocation, and value function are

the following:

ct = (1− aτ,γ)xtzt, (44)

xt+1 = aτ,γxtzt, (45)

v(xt, zt) =
(1− aτ,γ)−γ

1− γ
(xtzt)

1−γ (46)

These closed-form expressions allow us to directly assess the numerical accuracy and con-

vergence properties of the proposed reinforcement learning algorithm.

4.2 Training setup

We start with framing the intertemporal consumption problem in the Markov decision

process setting. The state st is represented by an asset holding xt and its return zt. The

state representation then becomes

st = (xt, zt) (47)

Knowing the asset holding and the return, the agent decides about the consumption level

ct. We represent the action as consumption share from the available wealth:

at =
ct

xtzt
(48)

After choosing the consumption level, the agent receives a flow utility u(ct):

ut+1 = u(ct) (49)

The transition dynamics depend on the distribution of the next period return zt+1. Follow-

ing the example in de Castro et al. (2023), we assume that the returns are i.i.d with possible

values {0.9, 0.95, 1, 1.05, 1.15}. We assign use probabilities {0.3, 0.10, 0.15, 0.3, 0.15} for the

individual shock values.

We restrict the approximation to an interval of asset holding xt ∈ [0.1, 2]. We sample

the initial value x0 from this interval. Since it can happen that the asset holding diverges

from this interval during the training we use boundaries 0.1 and 2. Whenever the asset

holding crosses the boundaries we use a naive guess of the next period value function. The

naive guess ensures that we have some value function estimates even outside the region of
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interest. Specifically, we use the following guess:

vguess =
(cshare · wQz)1−γ

(1− γ)[1− β[(1− cshare)Qz]1−γ]
(50)

The guess corresponds to a value function when the decision maker having wealth w = xtzt

will choose a static consumption share cshare under constant return Qz = Qτ(z) for the

all next periods. After 50 time steps, we sample a new initial state x0, and the training

proceeds from the initial state. The reason for this is that the intertemporal consumption

model is an infinite time steps model, and we cannot simulate the interaction to the end.

Next, we set up the Critic and Actor networks. The Critic consists of two hidden layers

with 20 neurons each, using hyperbolic tangent (tanh) and leaky ReLU activation func-

tions respectively. The output layer has no activation function and provides the estimate

of the value function. The Actor features two hidden layers, each with 11 neurons and

leaky ReLU activations. We model the policy with Beta distribution density. The Beta dis-

tribution is specifically chosen because it naturally models continuous actions constrained

within the interval [0, 1]. Hence, we can sample the consumption share from the Beta

distribution density and ensure that its values are between 0 and 1. The output layer of

Actor thus consists of two output neurons representing α and β parameters of Beta distri-

bution. To ensure both coefficients are positive, we use the softplus activation function on

the Actor’s output layer.

We use a discount factor of 0.95. For the learning rates, we use polynomial decay - we

start with a higher learning rate so that both Critic and Actor can calibrate quickly and

then gradually decrease the learning rate to get more precise estimates. For Critic, we start

with a learning rate of 0.01 and end with 0.001. For Actor, we start with 0.001 and end

with 0.0001. We set the speed of adjustment for the Critic target ρ = 0.02. To stabilize

the training, we parallelize the interactions. We let the networks interact simultaneously

with 1024 independent realizations of the underlying model. In addition, we collect the

transitions into a batch and update the network weights every 4 time steps. As a result, a

single update of Critic’s and Actor’s weight is made on 4096 transitions.
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Figure 1. Convergence of Critic network value function estimate for τ = 0.5 in state x = 1 and
z = 1

The gray dashed line, v∗, refers to the theoretical optimal value function. The blue solid line corresponds
to the predictions of Critic network in state x = 1 and z = 1 after the respective number of updates to its
weights.

4.3 Results

First, we present the results for the training process of individual networks for risk

preference τ = 0.5. Figure 1 depicts the convergence of value function estimate in state

with asset holdings x = 1 and return z = 1. The prediction of the Critic network prior to

the training is 0 and uninformed. After approximately the first 5000 updates the estimate

quickly approaches the theoretically optimal counterpart with a slight overshooting. After

the 30000 updates, the numerical estimate becomes indistinguishable from the theoretical

value function. The chart confirms the convergence of Critic network in the selected state.

The convergence of Actor network is depicted in Figure 2. The figure shows densities of

Beta distribution parametrized by Actor network predictions after the respective number

of updates. The first sub-figure depicts a flat density on the interval [0, 1]. It illustrates

that the starting policy is uninformed with an expected value consumption share of 0.5.

With a higher number of updates, the density shifts towards the theoretically optimal pol-

icy depicted by the vertical green dashed line. After 5000 updates, the density starts to

concentrate around the optimal consumption share with the expected value (vertical blue

dashed line) overlapping the optimal consumption share. After 50000 updates, the density

is narrowly distributed around the optimal consumption share. The expected value of the

density changes negligibly compared to the density after 5000, but the variance of the den-

sity reduces significantly. Together Figure 1 and Figure 2 illustrate a joint convergence of
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Figure 2. Convergence of Actor network policy for τ = 0.5
The blue area depicts the density of Beta distribution as predicted by Actor network after the respective
number of updates. The blue dashed line corresponds to the expected value associated with the density. The
green dashed line, π∗, refers to the theoretical optimal policy for the consumption share.

Critic and Actor networks. After approximately 5000 updates, the prediction of networks

is already relatively accurate. Yet, more updates provide more accurate estimates.

Next, we present the value function and policy for different values of asset holding x

for various risk preference levels. Figure 3 depicts results for three Critic networks, each

trained for a respective risk preference level τ = 0.25, 0.5, 0.75. On the selected interval of

asset holding x ∈ [0.1, 2], the Critic networks exhibit an almost perfect fit to the theoretical

value function for all risk preference levels. This result gives us the confidence that the

proposed algorithm can provide very precise estimates of the value function for various

risk preference levels. Recall, that we have theoretically an infinite number of transitions

on which the Critic network can be trained. Therefore, a network with sufficient capac-

ity should be capable of a perfect fit on a selected interval. Figure 4 compares the policy
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Figure 3. Comparison between Critic network prediction and theoretical optimal value function
for risk preference levels τ = 0.25, 0.5, 0.75 and z = 1

based on Actor network against its theoretical optimal counterpart. The left part of Fig-

ure 4, compares the policies for consumption level. The dashed lines represent an optimal

consumption level for a specified asset holding level given for the three risk preference

levels. The solid lines represent policy derived from the Actor network for the respective

risk level. We derive the consumption level policy by taking the expected value of Beta

distribution:

c =
α

α + β
· x (51)

where coefficients α and β are predicted by the Actor network. The policy for saving

level is then simply the difference between the predicted consumption level and the asset

holding x − c. From the left part of the figure, we can see that the consumption level

derived from the expected value of the Beta distribution almost perfectly matches the

optimal consumption level. This chart implies that the Actor network managed to learn

the optimal policy for all three risk preference levels. The right part of the figure illustrates

the approximation of the optimal saving level.

Since our algorithm is based on a gradient descent optimization, the algorithm con-

verges to locally optimal weights w and θ. The resulting solution is thus dependent on the

weight initialization as it does guarantee to find globally optimal weights. Consequently,
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(a) (b)

Figure 4. Comparison of Actor network based policy with theoretical optimal policy for
consumption and saving for risk preference levels τ = 0.25, 0.5, 0.75 and z = 1

each training can produce different results. For this reason, we evaluate the stability of the

results. We are agnostic to the stability of the network weights themselves, our interest is

in the stability of the networks’ output. As long as the network provides a good approxi-

mation of the theoretical value function and policy, the weighs themselves are not relevant.

To evaluate the stability of network outputs, we run an experiment where we train 100

pairs of Critic and Actor networks each with differently initialized weights. We train each

pair with the exact same setting except for using the differently initialized weights at the

beginning of the training. The results of the experiment are depicted in Figure 5. The

(a) (b)

Figure 5. Results of the experiment measuring the uncertainty of Critic and Actor network
convergence for risk preference τ = 0.5

left chart in the figure depicts the stability of Critic network output trained for τ = 0.5.
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The black line represents the theoretical optimal value function. The blue area around the

value function represents the band that contains 95% of the Critic network outputs for

the given asset holding level on the x-axis. The chart illustrates the strong stability of the

Critic network output. The algorithm found a suitable solution regardless of the weight

initialization. The right chart in the figure depicts the stability of Actor network. It plots a

histogram of the expected value of Actor policies around the theoretical optimal consump-

tion share. The resulting policies are tightly distributed around the optimal consumption

share suggesting stability of the algorithm also for the Actor network.

5 Conclusion

This paper develops a numerical solution method for dynamic quantile preference mod-

els, where a decision-maker maximizes a stream of future utilities evaluated through the

τ-quantile, for τ ∈ (0, 1). We first formalize the quantile preference framework within a

Markov decision process and establish a recursive formulation of the value function that

guarantees time consistency. The key contribution of the paper is the development of a

novel gradient-based reinforcement learning algorithm using neural networks that solves

the dynamic quantile optimization problem. By adapting the Actor-Critic method, we

propose an algorithm in which the Critic network estimates the τ-quantile value function

and the Actor network optimizes actions to maximize this value. The approach is scalable

to high-dimensional models and applicable in both model-based and model-free environ-

ments.

To evaluate the algorithm, we study an intertemporal consumption model with risky

asset returns, for which a closed-form analytical solution is available. This allows us to

benchmark the accuracy and convergence of the algorithm across various quantile-based

risk attitudes. Our results demonstrate that the proposed algorithm provides highly accu-

rate approximations of the theoretical value and policy functions, and converges reliably

across different initializations. Moreover, we confirmed the robustness of our algorithm

through repeated simulations with different initializations, indicating reliable and stable

convergence to optimal policy and value function estimates.

Overall, the developed gradient-based reinforcement learning framework significantly

expands the applicability of dynamic quantile models, enabling economists and practition-
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ers to solve complex, high-dimensional economic problems previously considered com-

putationally intractable. This approach offers a promising direction for future research,

extending quantile-based decision-making models into broader, more realistic economic

environments such as dynamic models with partial observability, general equilibrium set-

tings, or multi-agent interactions.
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