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Abstract:
One of the main types of government intervention aimed at fighting the COVID-19
pandemic were the social distancing measures. This article presents a novel approach
to examining the relationship between social distancing and workforce composition.
The model used is a SIRD model with dynamically optimizing individuals. The
model is estimated for each Czech region and calibrated for the ’social distancing
measure’ so that the model predictions best fit the data. This measure is then
compared in a regression with the share of skilled labour in each region. This article
finds that a significant correlation between social distancing preferences and
workforce composition.
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1. Introduction

The COVID-19 pandemic has been a major crises between the years 2020 and
2022. The pandemic took millions of lives and caused various fiscal and fi-
nancial crises. The pandemic was heterogeneous in it’s effect on countries and
even regions within countries. For instance, in the early waves of the pandemic,
USA reported around 18 times more deaths per capita than Australia (Bilin-
ski & Emanuel 2020). One of the main aspects causing this heterogeneity is
the difference between government intervention. There are many types of such
interventions. One type tries to affect transmissibility. These would be mea-
sures such as mandatory wearing of face masks. Other tried to enforce social
distancing, either by quarantine, lock-downs or traveling restrictions.

A main factor influencing effectiveness of social distancing measures is social
distancing compliance. Individuals try to optimize their private benefits during
the pandemic. If the utility from social activity is high enough, a rational in-
dividual would violate government mandated social distancing and they would
engage with others. There are numerous factors influencing social distancing
compliance, such as news media (Simonov et al. 2020), political beliefs (Painter
& Qiu 2020), social media (Gualda et al. 2021), mental capacities (Xie et al.
2020) and moral beliefs (Murphy et al. 2020) (Barrios et al. 2021).

Some professions are better able to be carried out remotely than other.
It has been shown that COVID-19 disproportionately affected employment of
workers in those professions that are largely unable to be done from home and
that involve close physical contact (Mongey et al. 2021). The goal of this article
is to find how is social distancing affected by workforce composition.

There are papers examining the link between social distancing and income
(Weill et al. 2020), socioeconomic status (Huang et al. 2020) or proportion
of essential workers (Garnier et al. 2021). All of these papers utilized mobile
device location data to measure social distancing. The method used in this
article doesn’t require such data. Instead, we rely on the model to correctly

predict social activity.
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The used model is a SIRD model for a well-mixed population modified
with social distancing which was proposed by Farboodi et al. (2021). In the
model, individuals dynamically optimize, choosing the optimal level of social
activity. Their overall utility is determined by their utility from engaging with
others minus the disutility from potentially getting COVID-19. We estimate
a measure of social distancing by estimating the model between the 30.8.2021
and 12.5.2022 for each Czech region separately, choosing such a k/U that the
resulting predictions of new daily infections best fit the data obtained from
MZCR (Ministry of Health of the Czech Republic). Using this method, we
acquire an estimate of measure of social distancing for each region. This means
that we can compare regions in terms of the preferences of their population
over social activity compared to health risks.

Finally, we can regress Share of Skilled Labour on a measure of social dis-
tancing . We find a positive correlation between the social distancing measure
and the Share of Skilled Labour variable, even after controlling for vaccina-
tion and population density, which is consistent with results of the literature
(Garnier et al. (2021), Huang et al. (2020),Weill et al. (2020)) concerning the
relationship between workforce composition and social distancing. There are
two main contributions of this article. First of all, we utilize a novel approach,
estimating social activity from the model and we find results consistent with
the literature. The other contribution is that the study is concerned with the
Czech Republic, while other studies primarily concentrated on the USA. This
article presents a method of investigating the topic in countries where data on
social distancing of individuals is difficult to come by.

The article starts with chapter 2 which introduces the epidemiological model
used. The chapter 3 contains a discussion of imports of various parameters
necessary for the model estimation and the estimation approach. In chapter
4, the results of modelling are discussed as well as various limitations of the
approach. Chapter 5 is the conclusion with discussion of possible future work

expanding on the approach in this article.



2. Epidemiological Model

To model social distancing compliance, individuals will optimize with respect
to a couple of variables. Each individual derives some utility from engaging
with other people, for instance by meeting in restaurants, in the theatre or by
traveling. On the other hand, they also risk getting the disease, which poses
disutility by spending a limited time sick or dying. The possibility of catching
the disease depends on the number of people engaging in social activity, the
number of infected people in the population and the transmission rate. These
variables coupled with the standard SIR model enable us to modify SIR with
social distancing compliance.

We begin constructing the modified SIR model by a couple of simplifying

assumptions for modelling individuals decisions:

o The population is well mixed and recovered never lose immunity.

o We assume that individual subjects don’t know whether they are infected

or not, but they know whether they are recovered.

» People also have possibility to die from the disease, denoted by 7. We
define D(t) to describe the proportion of individuals who died due to the

disease

o Individual social activity is described by a function a(t). Utility in our
model will only depend on a(t) and we will denote it u(a(t)). This is a
major simplification, since utility from social activity should depend on

social activity of others.

The basic SIR model contains 3 compartments: Susceptible, Infected and Re-
covered. It describes a course of a pandemic using a system of differential
equations. Susceptible are people who aren’t infected, but don’t have any
immunity - they can become infected. Infected are the people who have the
disease and can infect others. Recovered are those who were infected but are

no longer or who are no longer infectious.
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For our model, we will modify the SIRD model. The only difference between
a SIR model described and the SIRD model is the compartment D(t), which
denotes deceased individuals. The SIRD model can be described using following

dynamics:

S'(t) = —BS()1(t)
I'(t) = BS()I(t) —71(t)
R(t) = (1 —m)yI(t)
D'(t) = nyI(t)

Our model uses the SIRD model coupled with the ’changing the transmis-
sion rate’” approach for introducing social distancing into the SIR model, where
compared to the SIRD model, the transmission rate § depends on time. The

core dynamics of the model are:

S'(t) = —A(t)BS(t)I(t)
I'(t) = A*(t)BS(t)I(t) —~I(t)
R(t) = (1—m)yI(t)
D'(t) = myI(%)

A%(t) serves a similar purpose as 3 in the models described previously. When
compartments are interacting, the amount of interactions is multiplied by each
compartments social activity. Because people don’t know whether they are
susceptible or infected, both compartments’ social activity will be the same.
A person’s decision on their social activity is also influenced by the disutility
of contracting the disease. This disutility can be caused by various aspects of
the disease, such as the discomfort of experiencing symptoms of the disease,
long lasting effects on the disease (in the case of COVID-19 the so-called "Post-
COVID syndrome”) and finally the potential death. In the model in (Farboodi
et al. 2021), the only negative effect considered is the possibility of death. In
our model, the disutility from contracting COVID-19 is estimated, which means
that we should use the extended definition, as we don’t need to compute the
expected value of contracting COVID-19. We also aren’t able to compute it
exogenously, as we would need to multiply probability of dying from COVID-19

7w with the statistical value of life, which is not estimated for each Czech region.
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The beliefs regarding individual’s state are given by variables n;, ng,n,.
These beliefs are rational, meaning that they accurately represent the proba-
bility of an individual of being in each state. The contribution of an individual
towards the overall pandemic is negligible in a person’s decision making in the
model. All individuals know in advance how will the pandemic progress and
they optimize accordingly. Each individual should go through at most two
states. In the first, they are either susceptible or infectious. In this state, they
face the risk of getting infected with COVID-19 and they will choose their so-
cial activity accordingly. The other state is when they know they are recovered.
In this state, the individual simply chooses a(t) that maximizes u(a(t)).

Last component we need is time discounting. The decision-making process
will be modelled as if the individuals optimize until infinity, but there is a
heavy time-discounting. The time-discounting is caused by the possibility of
developing better cures in the future as well as by the uncertainty in the state
of the pandemic in longer time frame. The variables S(t), I(t), R(t), D(t) are
all divided by the population N for ease of interpretation of results of numerical
computation.

The function that individuals optimize is modelled in a following way.

o We take expected values of being in each of the two states, meaning that
we take probabilities of being in each state and multiply them by their
respective utility. For the recovered state, the expected value is n,u(a(t)).
The individual doesn’t face any disutility, so they optimize their social

activity freely.

o For the other state, the individual’s expected utility is (n(t)+n;(t))u(a(t))—
yn;(t)k. The term (ng(t)+n;(t))u(a(t)) is the probability of being suscep-
tible of infected times utility from social activity. The term ~yn;(t)k is the
probability of being infected times the probability of leaving the infected
compartment, denoted by ~ times expected value of leaving the infected

compartment, which is probability of dying times statistical value of life.
o All of the terms are multiplied by e™**, which is the time discounting.

We can now set-up the integral that all individuals try to maximize:
/0 [(ns(t) + ni(t))ula(t)) + n.()u(a(t)) — yn(t)kle " dt (2.1)

ny(t) = —PBa(t)ns(t) A(t)1(t) (2.2)
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ni(t) = Ba(t)ns (L) AL)I(t) — ni(t) (2.3)
n, () = (1= m)yni(t) (2.4)

Equations (2.2), (2.3) and (2.4) are similar to equations describing core
dynamics of the model and their logic is similar as well. An individual’s prob-
ability of getting infected is given by their amount of social activity a(t), the
transmission rate and their probability of being susceptible. In one time unit
t, interactions are given by the multiple of my social activity a(t) times the
amount of infected I(¢) times their social activity A(¢). In order to get in-
fected, an individual needs to be susceptible, so we multiply the expression by
ns(t). We also multiply the expression by the probability of transmitting the
disease /. Using the same logic, we get the equations (2.3) and (2.4).

Using these expressions, we can derive the system of differential equations

that we will try to estimate. The Hamiltonian for these equations is:

H(ns<t)7 nz(t)v (Z(t), As(t)a )‘z(t)) = (ns(t) + nz(t))u(a(t)) - ’ynz(t)k
— As(t)Ba(t)ns () AL () + Xi(t) (Ba(t)ns () AT (t) — yni(t)) (2.5)

We can use the fact that: "There are three necessary first order conditions
for optimal control. First, the derivative of the Hamiltonian with respect to
the control variable is zero... Additionally, the derivatives with respect to the
state variables and are equal to minus the time derivative of the costate, with

a correction for discounting” Farboodi et al. (2021). This gives us:

(ns(t) + na(t))u'(a(t)) = (As(t) — Ai(2)) Bns (L) AL (1) (2.6)
p(As(t) = Xi(1) = u(a(t)) + (Ai(t) = As(1)) Ba(t) A() (1) (2.7)
p(Ai(t) = Xi(1)) = ula(t)) = y(k + Xi(t)) (2.8)

And the transversality conditions:

; tp — 1 tpy . ) —
Jim e As(t)ns(t) = Jim e Xi(t)n;(t) =0 (2.9)
These equations determine an individual’s optimal level of social activity.
Since we assume all individuals to be homogeneous, we can now substitute
A(t) for a(t). In a society of homogeneous individuals, everybody has the same

probability of being susceptible or infected. Everybody knows how many people
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are in each compartment, so the personal probability can be substituted for the
amount of people in the compartment divided by the population: ng(t) = S(t)
and n;(t) = I(t) Using this substitution, we get the system of differential

equations that we estimate:

S'(t) = —BS(t)A*(t)1(t) (2.10)

I'(t) = BS(H)A*()I(t) —I(t) (2.11)

(S(t) + 1) (A1) = (As(t) = Xi(2)) BS (1) A(E) 1(2) (2.12)
pA(E) = Ni(1)) = u(A(1) + (Nilt) — As(t)) BA* ()1 (1) (2.13)
p(Ai(t) = Ai(1)) = u(A(t)) = v(k + Ai(t)) (2.14)

lim e”X\(t)S(t) = lim e\ (¢)I(t) =0 (2.15)

t——o0 t——o0



3. Estimation Methodology

The data is taken from the MZCR website, which is the official website of the
Ministry of Health of the Czech Republic. The data consists of the daily
amounts of positively tested individuals, the amount of recovered and the
amount of dead due to COVID-19, all three of which for each region. These
statistics do not fully describe the state of the pandemic, as not all positive
cases are tested. Some cases are without symptoms and symptomatic cases are
often unreported. This means that for the model to be calibrated accurately,
we need some estimate of the true number of cases.

A good way to gauge the true number of cases is by conducting seropreva-
lence studies. In this type of studies, a random sample from a population is
taken and a presence of antibodies is measured. By using this technique repeat-
edly, the researchers are then able to estimate the number of real cases. What
is extremely useful for SIR-based models of the pandemic is that the share of
people without antibodies can be used as a good estimate of the share of sus-
ceptible population if we account for loss of immunity over time. In this paper,
two results from seroprevalence studies are utilized. First, a study done by the
Piler et al. (2022), focusing on the presence of COVID-19 antibodies in the
population of the Czech Republic. The authors state that 51 % of responders
from a sample of 19548 tested positive for COVID-19 antibodies in the months
of February and March of 2021. Another essential figure used in the modeling is
the ratio of 1.7 measured by a meta-analysis of multiple seroprevalence studies
done by Bergeri et al. (2021). This figure describes the estimated ratio between
people with antibodies and reported cases from mass testing in High Income
European countries in Q4 of 2020 and Q1 of 2021. The 51 % is added with
1.7 times the number of cases between 30.3.2021 and 30.8.2021 to estimate the
number of susceptible at the beginning of the wave we are interested in. The
whole expression is then multiplied by 0.95 to estimate loss of immunity Dan
et al. (2021). Over the whole estimation of the model, all real-world data is
multiplied by the factor of 1.7.
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In this article, the time frame which we try to estimate spans from the
30.8.2021 to 12.5.2022. Both dates are chosen as to describe the last two waves
of the pandemic. Both these waves are taken together, as the time between the
waves is relatively short and the amount of new daily cases does not decrease as
significantly as in the previous waves. The start and end dates of the estimation
are chosen arbitrarily as for the model predictions to best fit the data.

The model is described using parameters (3, v, k/U and p and variables
S(t), I(t), As(t), A\i(t) and A(t). The parameters S and v are taken from
previous literature. ~ is taken as 1/7. This result comes from a study done
by Lauer et al. (2020), who estimated an incubation period of 5.1 days. The
parameter can be computed by taking one over the number of days between
becoming infected and recovering. The model setting presumes that individuals
don’t know whether they are infectious or still susceptible. This assumption
is unrealistic, especially when home tests are widely available. Not all people
engage in self-quarantine when they start developing symptoms. The slightly
lower v aims to capture average behavior, as people engage in self-quarantine,
but they don’t get tested instantly after developing symptoms or they don’t
fully stop with all interaction with susceptible individuals.

B can be estimated through the Ry and ~. The basic reproduction number
represents the average number of new infections generated by one person at
the beginning of a pandemic. Many studies try to estimate the measure with
widely different results. Kong et al. (2021) find a Ry for the Czech Republic
of 1.96. Locatelli et al. (2021) estimate Ry to be 2.2 (95 % CI: 1.9-2.6) for
Western Europe. Meta-analysis of studies concerning the Ry done by He et al.
(2020) finds Ry to be 3.15 and another meta-analysis written by Alimohamadi
et al. (2020) finds mean Ry from articles of 3.38. The choice of Ry = 2.5 done
in this article is based on the upper estimate of the two mentioned articles
concerning Western Europe and the Czech Republic. The choice of higher
than mean estimate is to take into account that new mutations of COVID
-19 often have higher transition rates. An article by (van Oosterhout et al.
2021, pg. 1) states: ”In recent weeks, several new strains of SARS-CoV-2, the
causative agent of COVID-19, have emerged. These variants have evolved an
increased transmission rate compared to the original strains”. The formula for
it in our model is Ry = A(0)S(0)3/v. At the beginning of a pandemic, A(0)
and S(0) are close to 1, which means that we can compute 5 as Ry * v. [ is
therefore computed as 2.5/7 = 0.35714285714.

The parameter k/U is unknown and it is estimated by minimizing the sum
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of least squares of predictions of the model about new daily infections and
modified data. In the model from Farboodi et al. (2021) only k is present, so
the utility function used in this article is a generalization of one of two of their

proposed utility functions. The utility function used here is:
u(a(t)) = =U/2(a(t) — 1)* (3.1)

The utility function is chosen in this way because it has a couple of useful
properties. First of all, it is concave. We would expect that if one does not have
any social contact, increasing their social activity by 0.1 would bring higher
utility than if a person with a lots of social contact. Second, the function
has a single peak. This enables us to easily find the maximum, which is at
a(t) = 1. Thirdly, both low and excessive amounts of social activity negatively
affect utility. This property also well describes reality, as people are both social
creature but with a need for privacy. Last useful property is that all individuals
will choose maximally social activity of 1. Choosing any more is dominated by
choosing a(t) = 1, because the utility from the function w(a(t)) is higher and
there is less chance of becoming infected.

The parameter k£ denotes the value of statistical life multiplied by the prob-
ability of dying from COVID -19. In the model, an individual compares the
expecting value of contracting COVID -19 with utility from social activity. It is
useful to use a more general version of a utility function proposed by Farboodi
et al. (2021) in the approach in this paper. Without utilizing any data on social
activity of individuals during the COVID-19 crisis, we can’t choose any specific
utility function. This function is chosen not only due to its appropriate prop-
erties, such as its concave shape, but also due to ease of use in computation.
The U parameter is not estimated itself, but it is useful to keep it in the model
to highlight the fact that the estimate of k/U will not only be affected by the
statistical value of life and the probability of dying due to COVID -19. k/U is
also affected by attitude towards social activity of people in the specific region,
which can widely differ between regions.

The model is composed of a system of four differential equations (2.10, 2.11,
2.13, 2.14) and one equation for social activity (2.12). To estimate a unique
solution to a system of differential equations, we need a starting condition,
which is a point in time where we know values of all of the variables. Unfor-
tunately, we don’t have such a point in time in this model. This is caused by

the co-state variables, for which we do not have real world data. The optimal
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solutions to the model follow equations (2.10-2.14) and the transversality con-
ditions (2.15). The condition is satisfied if we pick stationary terminal values
(derivatives of co-state variables equal zero). This choice of values of costate
variables is not necessary for the transversality condition to hold (if the co-state
variables would grow for instance linearly, the condition would still hold), but
this choice of terminal values enables us to estimate the model.

By solving equations (2.13) and (2.14) using this condition, we obtain ter-
minal values of A; and );. Terminal time is denoted by T'. It would be possible
to use real-world data to estimate terminal S(7") and (T"), but this approach
wouldn’t often yield any useful results. The modelled pandemic is very sensi-
tive to these two values, which means that the model might better fit the data
if we calibrate for one of them. The calibration of parameters in this model
is done by comparing the modelled new infections with modified data of real
infections. Since we want vectors of values of these two variables to be as close
as possible, we will choose the terminal value of I(7") to be a number of infected
individuals at the end date of the chosen wave and we will try to estimate the
terminal S(7") so that the model predictions best fit a modified real-world data.

The system of differential equations that describes the model does not have
an analytical solution. This means that we have to utilize a numerical approach
to approximating a solution to the model. The method used in this paper is
the Euler method. The Euler method works by splitting the time into discrete

units and it is described by the equation:

ft+1) = f(t)+Af(t)

Given that we know f’(t). A is the time between two discrete time units.
If we want to increase accuracy, we split the time into smaller time intervals.

This method is used in a backwards-shooting algorithm. Since we don’t
have the initial values of the co-state variables, but we know the beginning
state of S and I, we will have to start the estimation from the end of the
pandemic and estimate backwards to the beginning. The algorithm takes the
determined values of co-state variables and I(T"), and a guess of S(7') and
describes backwards in time a system of functions. The length of the pandemic
is unknown, which means that we don’t have a time where we know we have
to stop the algorithm. The algorithm stops after we find time before terminal
T where both S and I are sufficiently close to their real-world equivalents,

namely when real world S(¢) and /() rounded to three decimal places equals
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the modelled S(t) and I(t) to three decimal places. The two parameters that
are estimated are k/U and S(T).

To evaluate the model predictions for different values of k/U and S(T'), we
compare predictions of new infections with modified real-world data using the
Sum of Squares and we find the combination of k/U and S(T') that attains
the minimum value of the sum. We can’t use a linear regression, because the
modelled new daily infections’ dependence on k/U and S(T") can’t be expressed
linearly, due to the fact that the differential equations describing our model
don’t have an analytic solution. The optimization was done using the optimize
function in R. The optimize function takes a function of one variable and finds
a minimum of the function using a combination of the golden section search
and the successive parabolic interpolation. It takes values of the function at
different values of the variable and finds the value of its minimum using the
aforementioned methods. The function used is the Sum of Squares of real-world

data and the model predictions new daily infections. We can express it as:

FIN(T), kJU) = S (newly(t) — newl,, (t, N(T), k/U))? (3.2)

t=1

In (3.1), the variable newly(t) denotes the new daily infections taken from
MZCR data multiplied by 1.7 at day ¢ of our chosen time interval, which spans
from 30.8.2021 to 12.5.2022. The variable newl,,(t, N(T),k/U) captures the
new daily infections predicted by the model at time t, given N(7T") and k/U. If
we choose specific values of N(T') and k/U, we get model prediction of daily
new infections. The sum ends after 255 days, which is the length of the time
interval. Since optimize finds a minimum of a single variable function, we first
specify a new function, which uses optimize on the equation (3.1) for a given
k/U. This new function takes k/U as an argument and it finds the N(T") for
which equation (3.1) attains a minimum. We use optimize on this new function
to find k/U.

The model was estimated for each region. In figure 3.1, we can see that
even with optimal parameters k/U and S(T), the model is unable to predict
two waves. This result is consistent among all 14 regions. While the model
can be modified to capture multiple waves, it would be much more complicated
to choose values of key parameters such as 3, because of the presence of new
variants of COVID-19.

The setting of individual choice in this model suggests that higher k/U

encourages more social distancing, because the trade off between social activity
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Figure 3.1: Daily new cases in the capital city Prague between
30.8.2021 and 12.5.2022. Black points denote model new

cases, red points denote real-world data.
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and catching COVID-19 is worse. The model results support this hypothesis,
as can be seen in figure 3.2..

Any mathematical model used to describe a pandemic is inherently lim-

13
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ited, because there are numerous factors influencing a spread of a disease and
one model can’t include all of them. One of the limitations of this model com-
pared to other models is how low the number of compartments is in this model.
There are models that include exposed population (Li et al. 2021), that dif-
ferentiate between asymptomatic and symptomatic cases (Gaeta 2020) or even
both (Hromadkova 2020). Including these categories in this model could pro-
vide better predictions, although at the cost of making the model much more
computationally complex and difficult to estimate. The model as is does not
enable multiple waves of the disease. There are two main biases if we estimate

the last two waves.

The model does not take into account vaccination. Vaccination decreases
the amount of susceptible individuals continuously. The way the model is
estimated, the parameters 5 and v are already determined from other studies,
we don’t calibrate them. Social distancing decreases the amount of interactions,
which decreases the amount of new infections. If we increase k/U, the social
distancing increases, which means that the social activity A(t) decreases. This
in turn means that the amount of infected individuals I(¢) is lower throughout
the modelled pandemic. With k being close or equal to zero, individuals are
not concerned with the prospect of dying from COVID-19 and they set their
activity A(t) to one for all £. In this situation, we get the same results as in a
SIRD model.

Not including vaccination into the model provides positive bias to the es-
timate of k/U. Vaccination decreases the size of the susceptible class S(t),
which in turn decreases the amount of new infections. Without any social
distancing or vaccines, there would be many more daily infections. The model
overestimates k/U, because the difference between potential infections and real
infections is explained only through social distancing, while in reality, part of

them are decreased due to vaccines.

The model also does not take into account different variants. Some of
them differ from one another even in model parameters, such as mortality,
the transition rate § or recovery rate v (van Oosterhout et al. 2021). Newer
variants, such as the omicron variant, has higher transition rate and lower
mortality then variants present at the beginning of the pandemic. This means
that the k/Uis underestimated. With the same sizes of all other parameters

and social distancing A(t), an estimation of the model with higher transition
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rate has a higher number of daily infections. If we used true [ of the newer
variants, we would estimate higher k /U, as it would need to balance the increase
in daily infections as to match the real-world data. This implies that k/Uis
underestimated.

In this article, the measure used for workforce composition is the share of
high skilled labor in the employed population in the region. A variable used for
high skilled labor are the groups with competence level 3 or higher according
to the International Standard Classification of Occupations (CZ-ISCO) - level
1 - Major group. The included groups are also assumed to be the most able to
engage in social distancing by conducting their work remotely, compared with
the other groups.

From observing data in Table 3.1, we can already determine one outlier,
which is Praha Region in terms of Vaccines per Capita. The SoHSL denotes
Share of Skilled labour in table 3.1. Leaving Prague out of the sample would
be costly to the variance of explanatory variables. It is not an outlier in both
k/U and Share of Skilled Labour, so it is better to leave it included.

As noted before, the model does not include vaccination, which causes bias
in the estimated k/U. There is notable heterogeneity between regions in terms
of vaccination, which means that the bias would affect k/U in each region by
the different degrees. Attitudes towards vaccination can also be linked with
the share of high skilled labor, as people with higher education are more likely
to get vaccinated (Humer et al. 2021). If we choose a linear regression model

in the form of:
k/U = By + B1 * shareofhighskilledlabor + [ * ratioo fvaccinated + u

the analysis will not suffer from the bias, as we include vaccination.

A second main source of bias was identified in the model where the mu-
tations and variants of COVID-19 are not taken into account. The model
estimates one pandemic with only one set of parameters of 5 and . The dis-
tribution of different variants is not homogeneous between regions so it could
be a potential source of a bias, but the identification of properties of different
variants of COVID-19 and their spread across the Czech regions is beyond the
scope of this article. For illustration, a figure 3.4 shows complexity of spread

of different COVID-19 variants across Czech regions.
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Table 3.1: Variables for each region. Variable explanations: k/U - the
measure of willingness of individuals to engage in social
distancing, SoHSL - Share of High Skilled Labor, VpC -
Vaccines per Capita, VpCpVC - Vaccines per Capita per
Vaccination Center

Region

rownames i k/u SGHSLi wpC i VpCpwviC |

Praha RrRegion i 17.7 0.756 i 41 i 0.0438 i
stredocesky Region i 12.1 0.495 i .35 i 0.0397 i
Jihocesky region i 0.322 0.422 i . 67 i 0.0793 i
Plzensky Region i 18.5 0.436 i 66 i 0.0664 i
kKarlovarsky Region i 2.25 0. 369 i . B5 i 0.127 i
Ustecky Region i 1.51 0. 382 i .57 i 0.0583 i
Liberecky RrRegion i 0.312 0.435 i 59 i 0.144 i
KraWDvehradecky'i 4.16 0.484 i . 67 i 0.0834 i
Region ! ! ! !

rardubicky region i 14.7 0.447 i .82 i 0.0828 i
Region Vysocina i 0. 0001 0. 384 i .15 i 0.0605 i
Jihomoravsky Region i 5.53 0.523 i . 67 i 0.0438 i
Olomoucky Region i 0. 0001 0.434 i A7 i 0.105 i
Z1linsky Region i 3.07 0.432 i 52 i 0.0689 i
MoravskosTlezsky i 0 0.455 i 51 i 0.0433 i

1 ] ] |
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Figure 3.3: Representation of different COVID-19 variants in each re-

gion in the 22nd week of 2022
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Table 3.2: Regressions

k/U
Only SoSL With Vaccination With Density
(1) (2) (3)
Share of Skilled Labor 42.283** 24.758 48.098
(17.141) (27.485) (41.378)
Vaccines per Capita 7.719 11.023
(9.379) (10.487)
Population density —0.005
(0.006)
Constant —13.758 —18.193* —32.826
(8.056) (9.784) (21.540)
Observations 14 14 14
R? 0.336 0.375 0.410
Adjusted R? 0.281 0.261 0.233

Residual Std. Error
F Statistic

5.884 (df = 12)
6.085" (df = 1; 12)

5.965 (df = 11)
3.299% (df = 2; 11)

6.080 (df = 10)
2.313 (df = 3; 10)

Note:

“p<0.1; *p<0.05; **p<0.01



4. Results

Figure 3.1 shows the comparison between the estimated pandemic and the
real-world data. The model is successful in capturing the new daily cases in
the second wave depicted, but unsuccessful in showing the first wave. The
fact that there are multiple waves of COVID-19 might be affected primarily
by the government measures and emergence of new variants. The aspect in
which the model fails is the social activity. Even without additional data and
measures, we can state that the social activity decreased to some degree in all
regions, while the model suggests that in regions such as the region Vysocina,
the Liberecky region, the Jihocesky region and the Olomoucky region have k/U
close to zero, which corresponds to almost no decrease in social activity, as can
be seen in Figure 3.2.

This result could be explained in several ways:

o First of all, the coefficient 5 might be understated. The [ coefficient
was estimated using the basic reproduction number Ry. Different studies
were not unanimous in its estimation. We used an upper limit for early

estimate of Ry for the Czech Republic and rich European countries.

o We already established that this might still be understated, as since the
publication of these studies, newer variants emerged with potentially
lower Ry and also . Lower § would imply a lower k/U, as the num-
ber of daily infections is increasing in § and decreasing in k/U. The k/U

would be estimated to be lower to counteract less infections from lower

8.

« Another reason for the low k/U might be that the number of real cases
might be lower than used to estimate the model. We multiplied the num-
ber of daily cases by 1.7 in order to get closer to calibrating for all cases,
not only the reported ones. While this number might be more appropri-

ate to earlier waves, people could be more used to getting tested in those
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two last waves. The bans of traveling without negative tests and preva-
lence of self-tests might have encouraged the more thorough testing and
the amount of unreported cases might have been lower. The population
might have also been more used to getting tested. If we calibrated for
fewer cases, the k/U would be higher, as the model would overestimate

the number of cases otherwise.

To amend this issue, one could acquire proxy data for the social activity and
then calibrate the model for that data. This approach is much closer to the one
in Farboodi et al. (2021). The problem with this approach is that the estimated
daily infections might be largely overestimated. For instance, in the Farboodi
et al. (2021) paper, the authors demonstrated how the model is successful in
modelling the social activity, even without any calibration if we set U = 1. The
problem with their estimation is that their model predicted roughly 2/3 of the
US population to get infected in the first wave. This wasn’t the case, as even
for 30.6.2022, there were roughly 89 million confirmed cumulative cases, which
isn’t even 1/3 of USA population.

After estimating the model for each region, we acquire Figure 3.2. The
Vaccines per Capita variable represents the cumulative number of vaccines
administered in the region until 12.5.2022 divided by the population of the
region. This measure serves as a proxy to the amount of vaccinated in each
region. The difference between the proxy and the other variable can be seen
in the case of the Stredocesky region. Intuitively, there is no reason for the
Vaccines per Capita measure to be so low in the Stredocesky region - there is
a large degree of migration between Prague and Stredocesky region. We also
wouldn’t expect more sceptical attitudes towards vaccination in this region,
since many people there work in the capital city. The reason why the Vaccines
per Capita measure is so low can be explained by the inter-region migration.
People from the Stredocesky region could have traveled to the Prague region
to get their vaccines. The administrative center of the region is Prague, which
makes it unique among other regions, because their administrative centers are
in cities only belonging to the region.

It is thus also possible to use the VpCpVC measure, which is an acronym
denoting Vaccines per Capita per Vaccination Center. This measure is con-

structed using the following formula:

NumberofV accines

VpCpV C =

Population * NumberofV accinationCenters
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This formula should ensure better estimation of the number of vaccinated peo-
ple in the region, because the regions with relatively higher amounts of vacci-
nation centers should attract more visitors from other regions. This measure
didn’t produce substantially different results to the three regressions included.

One other control variable considered was the population density. This vari-
able should be correlated with the Share of Skilled Labour variable, because
those regions with higher population density will have larger cities, which at-
tract skilled labour. It is also reasonable to assume that population density
affects social distancing. People in regions with higher population density will
be more likely to live in big cities. The mixing of the population in these cities
could be more thorough than in regions where the population is more spread
out over villages and smaller cities. The problem with using this variable is
that due to it’s high correlation with Share of Skilled Labour, we risk the col-
inearity bias. With already a low amount of observations, adding this variable
would risk overfiting, so the variable is left out. After adding to the regression,
the adjusted r-squared doesn’t increase, further discouraging it’s inclusion in
the regression.

The conclusions drawn from these regressions suffer some limitations. First
of all, there are only 14 observations, which means that we can’t use a large
number of variables. If we use too few variables, we risk the results being
affected by biases. For example, not including vaccination measure causes an
omitted variable bias, as described before. If we include too many variables,
we run the risk of over-fitting. All three regressions maintain the same sign for
the effect of Share of Skilled Labor. Regressions (2) and (3) don’t contain any
significant predictors and the overall F-test is also non-significant. Since the
amount of observations for the regressions is very small, we are limited in what
we can infer. All the regressions suggest that there is a positive correlation
between the Share of Skilled Labor and k/U, which depicts unwillingness to
engage in social distancing. If there is a higher share of skilled labor in a
region, we would expect the inhabitants of that region to comply more in
social distancing. The sign of the correlation didn’t change after including the
vaccination variable into the regression, suggesting that the result holds even

when accounting for differences regarding vaccination in each region.



5. Conclusion and Discussion

Individual countries and even regions within countries had heterogeneous ex-
periences in the COVID-19 pandemic. The way a disease spreads is not only
determined by it’s biological aspects, but also by the characteristics of the
population it spreads in. One of the main determinants of the spread of the
pandemic is social activity. Most people in the world experienced a lock-down,
a quarantine and other government mandated social distancing measures with
various degrees of effectiveness in stopping the spread of COVID-19. This ar-
ticle presents a novel approach to investigating the relationship between work-
force composition and social distancing during the COVID-19.

The article uses a model that takes the SIRD model with a well-mixed pop-
ulation. This model is enhanced by including a social activity measure, which
modifies the transmission rate. Rational individuals with perfect information
dynamically optimize their social activity over the course of the pandemic.
Core model parameters are calibrated to best fit the new daily infections from
30.8.2021 to 12.5.2022. The calibrated parameter of interest is k/U, which
denotes the statistical value of life divided by the subjective value of social
activity. We first take the modified real-world data and we find the value
of the social distancing measure k/U such that the model best fits the data.
We use this method to estimate k/U for each region. By estimating k/U, we
get a measure of preferences regarding social distancing that can be compared
with workforce composition. We then regress k/U on share of skilled labour,
vaccination per capita and population density.

We find a positive correlation between share of skilled labour and social
distancing. This result is consistent with Garnier et al. (2021), who finds that
poorer counties in the USA with more poverty and essential workers engage less
in social distancing. Similarly, the result is also consistent with Huang et al.
(2020) and Weill et al. (2020). This article provides a new method to identify
social distancing without use of mobile device data. It also contributes by ex-

amining the relationship between social distancing and workforce composition
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in the Czech Republic, while most of the literature focuses solely on the USA.

The article still leaves room for exploration with the used approach. We
only estimated one wave of the COVID-19 pandemic in the Czech regions. It
would be theoretically possible to estimate k/U for multiple waves of the pan-
demic, which would gives us many more observations in the form of panel data.
Another possibility is to include regions from other countries, or even estimate
k/U for each country as a whole. Utilizing these approaches would potentially
enable usage of more control variables, which would make the regression more

rigorous.



Bibliography

ALIMOHAMADI, Y., M. TAGHDIR, & M. SEPANDI (2020): “Estimate of the
basic reproduction number for covid-19: a systematic review and meta-
analysis.” Journal of Preventive Medicine and Public Health 53(3): p. 151.

BARRIOS, J. M., E. BENMELECH, Y. V. HOCHBERG, P. SAPIENZA, & L. ZIN-
GALES (2021): “Civic capital and social distancing during the covid-19 pan-
demicat.” Journal of public economics 193: p. 104310.

BERGERI, 1., M. WHELAN, H. WARE, L. SuBIssi, A. NARDONE, H. C. LEWIS,
Z. L1, X. MA, M. VALENCIANO, B. CHENG et al. (2021): “Global epi-
demiology of sars-cov-2 infection: a systematic review and meta-analysis
of standardized population-based seroprevalence studies, jan 2020-oct 2021.”

medRziv .

BiLiNskI, A. & E. J. EMANUEL (2020): “Covid-19 and excess all-cause mortal-
ity in the us and 18 comparison countries.” Jama 324(20): pp. 2100-2102.

Dan, J. M., J. MaTEUs, Y. KATOo, K. M. HAsTIE, E. D. YU, C. E. FALITI,
A. GRIFONI, S. [. RAMIREZ, S. HAUPT, A. FRAZIER et al. (2021): “Immuno-

logical memory to sars-cov-2 assessed for up to 8 months after infection.”
Science 371(6529): p. eabf4063.

FarBooODI, M., G. JAROSCH, & R. SHIMER (2021): “Internal and external
effects of social distancing in a pandemic.” Journal of Economic Theory
196: p. 105293.

GAETA, G. (2020): “A simple sir model with a large set of asymptomatic
infectives.” arXiv preprint arXiv:2003.08720 .

GARNIER, R., J. R. BENETKA, J. KRAEMER, S. BANSAL et al. (2021): “So-

cioeconomic disparities in social distancing during the covid-19 pandemic in



Bibliography 25

the united states: observational study.” Journal of medical Internet research
23(1): p. e24591.

GUALDA, E., A. KROUWEL, M. PALACIOS-GALVEZ, E. MORALES-MARENTE,
I. RODRIGUEZ-PAscUAL, & E. B. GARCIA-NAVARRO (2021): “Social dis-
tancing and covid-19: Factors associated with compliance with social dis-

tancing norms in spain.” Frontiers in psychology 12.

He, W, G. Y. Y1, & Y. ZHU (2020): “Estimation of the basic reproduction
number, average incubation time, asymptomatic infection rate, and case fa-

7

tality rate for covid-19: Meta-analysis and sensitivity analysis.” Journal of

medical virology 92(11): pp. 2543-2550.

HROMADKOVA, v. (2020): “Initiative model anticovid-19 for C r, model a

overall epidemiological view, technical description.”

HUANG, V., S. SUTERMASTER, Y. CAPLAN, H. KEmMP, D. ScumuTz, & S. K.
SGAIER (2020): “Social distancing across vulnerability, race, politics, and
employment: How different americans changed behaviors before and after

major covid-19 policy announcements.” MedRxiv .

HUMER, E., A. JESSER, P. L. PLENER, T. PROBsT, & C. P1EH (2021): “Ed-
ucation level and covid-19 vaccination willingness in adolescents.” European
Child & Adolescent Psychiatry pp. 1-3.

Kong, J. D., E. W. TEKwA, & S. A. GIGNOUX-WOLFSOHN (2021): “So-
cial, economic, and environmental factors influencing the basic reproduction
number of covid-19 across countries.” PloS one 16(6): p. €0252373.

LAUER, S. A., K. H. GRaNnTZ, Q. B1, F. K. JONES, Q. ZHENG, H. R. MERED-
ITH, A. S. AzmMAN, N. G. REICH, & J. LESSLER (2020): “The incubation pe-
riod of coronavirus disease 2019 (covid-19) from publicly reported confirmed

cases: estimation and application.” Annals of internal medicine 172(9): pp.
577-582.

L1, W., J. Gong, J. Zuou, L. ZHANG, D. WANG, J. L1, C. SHI, & H. FAN
(2021): “An evaluation of covid-19 transmission control in wenzhou using a

modified seir model.” Epidemiology & Infection 149.

LocatELLL I, B. TRACHSEL, & V. ROUSSON (2021): “Estimating the basic

reproduction number for covid-19 in western europe.” Plos one 16(3): p.
e0248731.



Bibliography 26

MONGEY, S., L. PiLossoprH, & A. WEINBERG (2021): “Which workers bear
the burden of social distancing?” The Journal of Economic Inequality 19(3):
pp. 509-526.

MurpHY, K., H. WILLIAMSON, E. SARGEANT, & M. McCARTHY (2020):
“Why people comply with covid-19 social distancing restrictions: Self-
interest or duty?” Australian € New Zealand Journal of Criminology 53(4):
pp. 477-496.

VAN OOSTERHOUT, C., N. HALL, H. Ly, & K. M. TYLER (2021): “Covid-19
evolution during the pandemic—implications of new sars-cov-2 variants on

disease control and public health policies.”

PAINTER, M. & T. Qru (2020): “Political beliefs affect compliance with covid-
19 social distancing orders.” Covid Economics 4: pp. 103-123.

PACES, K. (2022): “Varianty sars-cov-2 v Ceské republice.” .

PILER, P., V. THON, L. ANDRYSKOVA, K. DOLEZEL, D. KOSTKA, T. PAVLIK,
L. DUSEK, H. PIKHART, M. BOBAK, S. MATIC et al. (2022): “Nationwide
increases in anti-sars-cov-2 igg antibodies between october 2020 and march

2021 in the unvaccinated czech population.” Communications Medicine 2(1):

pp. 1-7.

SiMONOV, A., S. K. SACHER, J.-P. H. DUBE, & S. Biswas (2020): “The
persuasive effect of fox news: non-compliance with social distancing dur-
ing the covid-19 pandemic.” Technical report, National Bureau of Economic

Research.

WEILL, J. A., M. STIGLER, O. DESCHENES, & M. R. SPRINGBORN (2020):
“Social distancing responses to covid-19 emergency declarations strongly dif-

ferentiated by income.” Proceedings of the National Academy of Sciences
117(33): pp. 19658-19660.

XIiE, W., S. CAMPBELL, & W. ZHANG (2020): “Working memory capacity pre-
dicts individual differences in social-distancing compliance during the covid-
19 pandemic in the united states.” Proceedings of the National Academy of
Sciences 117(30): pp. 17667-17674.



Appendix A

The coding for this article was compiled in R. The model is estimated as de-
scribed in chapter 3.2. Because the equations for costate variables are unstable,
we develop two models simultaneously arbitrarily close to one another. If these
two models separate by too large of a degree, the development of the model
is stopped and new values of S(t) are chosen between those two models S(t).
From this point, other variables are made equal between the two models and
the development continues.

The estimation in section 2 is repeated 14 times, once for each region. The
detailed comments for one such estimation can be send upon request.

The red dotes denoted real new infections multiplied by 1.7, while the black

dots denote model predictions in the models below.
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The red dotes denoted real new infections multiplied by 1.7, while the black

dots denote model predictions.

Praha Region

15000 - °

10000 -

New cases

5000 -




5. BIBLIOGRAPHY

29

Moravskoslezky,Region

15000 -
L]
L]
°o® e
L]
L]
> [ ]
10000 - — A.
1% d
@ °e o ..t... .°
3 ‘e |
. e '
2 ° © . °
[7) ® o oo
p=4 O A o o .: e o
[
LN ] o
L]
5000 - ..,
L]
° L]
L
L]
&oee
0'. ... .
N‘- °
0- onenEbSARS
0 100 200
Days
Zlinsky,Region
10000 -
L]
L]
7500 - e
L]
L]
° ® o
1%
Q
& 5000-
o
=
[}
z
2500 -
0.

Days



30

5. BIBLIOGRAPHY

Olomoucky,Region

8000 -

6000 -

4000~

S8sed MaN

2000 -

Days

Jihomoravsky,Region

15000 -

10000 -

S9sed MaN

*
O
oooouooc o o
o0, o
°o® Y
L4
o ®
L] . o F)
° L]
° L]
Y L]
L]
L] O °
Y L]
¢ o°
o °°
L]
..o.. "
<
)
&
o
o
wn

'
200

Days



5. BIBLIOGRAPHY

31

Vysocina,Region

6000 -

4000 -

New cases

2000 -

Days

Pardubicky,Region

6000 - -

IN
o
=]
=]
'

New cases

2000-

0-

'
0 100 200



32

5. BIBLIOGRAPHY

Kralovehradecky,Region

8000 -

6000 -

4000 -

S8sed MaN

2000 -

200

1(‘)0

Days

Liberecky,Region

6000 -

4000~

S9sed MaN

2000 -

'
200

Days



5. BIBLIOGRAPHY

33

New cases

New cases

12000

9000

6000

3000

3000-

n
o
=]
]
[

1000 -

Ustecky,Region

Karlovarsky,Region

Days

Days

2(‘)0



34

5. BIBLIOGRAPHY

Plzensky,Region

10000 -

7500~

'
o
=]
=]
n

S8sed MaN

2500~

2(IJO

1[I)0

Days

Jihocesky,Region

8000~

6000 -

4000~

S9sed MaN

2000 -

'
200

Days



5. BIBLIOGRAPHY 35

Stredocesky,Region

20000 -

15000 -

New cases

10000 -

5000~

Days

Figure 5.1: Social activity between 30.8.2021 and 12.5.2022: Praha
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Figure 5.2: Social activity between 30.8.2021 and 12.5.2022: Stredo-
cesky Region
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Figure 5.3: Social activity between 30.8.2021 and 12.5.2022: Jiho-
cesky Region
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Figure 5.4: Social activity between 30.8.2021 and 12.5.2022: Plzensky
Region
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Figure 5.6: Social activity between 30.8.2021 and 12.5.2022: Ustecky

Region
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Figure 5.7: Social activity between 30.8.2021 and 12.5.2022:
Liberecky Region
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Figure 5.8: Social activity between 30.8.2021 and 12.5.2022:
Kralovehradecky Region
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Figure 5.9: Social activity between 30.8.2021 and 12.5.2022: Pardu-
bicky Region
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Figure 5.10: Social activity between 30.8.2021 and 12.5.2022: Region
Vysocina
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Figure 5.11: Social activity between 30.8.2021 and 12.5.2022: Jiho-
moravsky Region
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Figure 5.12: Social activity between 30.8.2021 and 12.5.2022: Olo-
moucky Region
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Figure 5.13: Social activity between 30.8.2021 and 12.5.2022: Zlinsky

Region
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Figure 5.14: Social activity between 30.8.2021 and 12.5.2022:
Moravskoslezsky Region
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