Detail práce

The LSTM approach for Value at Risk prediction

Autor: Bc. Nikanor Goreglyad
Rok: 2021 - letní
Vedoucí: Marek Hauzr
Konzultant:
Typ práce: Bakalářská
Jazyk: Anglicky
Stránky: 78
Ocenění:
Odkaz:
Abstrakt: This thesis describes a new Value at Risk forecasting method based on a neural
network with Long Short-term Memory architecture trained with Joint Supervision loss function (JS LSTM). By optimizing the number of data points on
both sides of the predicted value, JS LSTM produces VaR prediction for a
given confidence level. The JS LSTM is trained to predict one-day-ahead VaR
for PX, WIG20, BUX, and SAX market indexes. The result was compared
with FIGARCH model, EVT-POT model, and LSTM model trained with realized VaR. The performance evaluation shows that the proposed model has
marginally better performance than benchmark models in periods of normal
volatility but underperform in periods of increased volatility.

02

Prosinec

Prosinec 2021
poútstčtsone
  12345
6789101112
13141516171819
20212223242526
2728293031  

Partneři

Deloitte

Sponzoři

CRIF
McKinsey
Patria Finance